Explanation: where the article????
Answer:
[CO] = 7.61x10⁻³M
7.61x10⁻³x10³ = 7.61
Explanation:
For a generic equation aA + bB ⇄ cC + dD, the constant of equilibrium (Kc) is:
![Kc = \frac{[C]^cx[D]^d}{[A]^ax[B]^b}](https://tex.z-dn.net/?f=Kc%20%3D%20%5Cfrac%7B%5BC%5D%5Ecx%5BD%5D%5Ed%7D%7B%5BA%5D%5Eax%5BB%5D%5Eb%7D)
We need to know the molar concentrations in the equilibrium. In the beginning, there is only COCl₂, and its concentration is the number of moles divided by the volume:
[COCl₂] = 7.73/10.0 = 0.773 M
So, the equilibrium will be:
COCl₂(g) ⇆ CO(g) + Cl₂(g)
0.773 0 0 <em>Initial</em>
-x +x +x <em> Reacts</em>
0.773-x x x <em>Equilibrium</em>
Supposing that x<<0.773, then:

7.5x10⁻⁵ = x²/0.773
x² = 5.7975x10⁻⁵
x = √5.7975x10⁻⁵
x = 7.61x10⁻³ M
The supposing is correct, so [CO] = 7.61x10⁻³ x 10³ = 7.61
Answer:
Explanation:
<em>Endothermi</em>c processes absorb energy. The final state contains more energy than the initial state.
Since ice absorbs heat energy <em>in the process of completely melting</em> this is an <em>endothermic</em> process.
The process involves two stages: 1) heating the ice up to the melting point, which is 0ºC, and 2) melting the ice.
1. Heating the ice from -15ºC to 0ºC
a) Formula: Q = m×C×ΔT
- C = 2.108 kJ/kg.ºC (specific heat of ice)
b) Calculations:
- Q = m×C×ΔT = 1.6 kg × 2.108 kJ/kg.ºC × 15ºC = 50.592 kJ
2. Melting the ice at 0ºC
a) Formula: L = m × ΔHf
- ΔHf = 334 kJ/kg (latent heat of fussion)
b) Calculations
- L = m × ΔHf = 1.6 kg × 334 kJ/kg = 534.40 kJ
<u />
<u>2. Total heat</u>
<u />
- 50.592 kJ + 534.40 kJ = 584.992 kJ ≈ 590 kJ (rounded to 2 significant figures)
6NaC₂H₃O₂ + Fe₂O₃ → 2Fe(C₂H₃O₂)₃ + 3Na₂O
Explanation:
Given equation;
NaC₂H₃O₂ + Fe₂O₃ → Fe(C₂H₃O₂)₃ + Na₂O
To find the coefficient that will balance this we equation, let us set up simple mathematical algebraic expressions that we can readily solve.
Let us have at the back of our mind that, in every chemical reaction, the number of atom is usually conserved.
aNaC₂H₃O₂ + bFe₂O₃ → cFe(C₂H₃O₂)₃ + dNa₂O
a, b, c and d are the coefficients that will balance the equation.
conserving Na; a = 2d
C: 2a = 6c
H: 3a = 9c
O; 2a + 3b = 6c + d
Fe: 2b = c
let a = 1
solving:
2a = 6c
2(1) = 6c
c = 
2b = c
b =
= 
d = 2a + 3b - 6c = 2(1 ) + (3 x
) - (6 x
) = 
Now multiply through by 6
a = 6, b = 1, c = 2 and d = 3
6NaC₂H₃O₂ + Fe₂O₃ → 2Fe(C₂H₃O₂)₃ + 3Na₂O
learn more:
Balanced equation brainly.com/question/9325293
#learnwithBrainly
To find AH°rxn, we use the following equation:
What we're going to do is to sum the enthalpy of the products and then substract with the enthalpy of the reactives:
As you can see, we need to multiply by the coefficients of the reaction.
Now, just replace the values of the table:
So the answer is -822.2kJ/mol.
For b:
Now, just replace the values of the table:
The answer for b is -1036kJ/mol.