Answer:
The correct answer is (b)
Explanation:
Charles law describes the behavior of gases when heated. Charles law states that the volume of a given mass of gas would increase as its Kelvin temperature increases provided the pressure is held constant. That is the volume of a given mass of gas is directly proportional to its Kelvin temperature at constant pressure
Answer:
c : 13%
Explanation:
Data Give:
Experimental density of vanadium = 6.9 g/cm³
percent error = ?
Solution:
Formula used to calculate % error
% error = [experimental value -accepted value/accepted value] x 100
The reported accepted density value for vanadium = 6.11 g/cm³
Put value in the above equation
% error = [ 6.9 - 6.11 / 6.11 ] x 100
% error = [ 0.79 / 6.11 ] x 100
% error = [ 0.129] x 100
% error = 12.9
Round to the 2 significant figure
% error = 13 %
So, option c is correct
The question is incomplete, complete question is ;
A deep-sea diver uses a gas cylinder with a volume of 10.0 L and a content of 51.8 g of
and 33.1 g of He. Calculate the partial pressure of each gas and the total pressure if the temperature of the gas is 21°C.Express the pressures in atmospheres to three significant digits separated by commas.
Answer:
Partial pressure of the oxygen gas is 3.91 atm.
Partial pressure of the helium gas is 20.0 atm
Total pressure of the gases is 24.0 atm
Explanation:
Moles of oxygen gas = 
Moles of helium gas = 
Total moles of gas = 
Volume of the cylinder = V = 10.0 L
Total pressure in the cylinder = P = ?
Temperature of the gas in cylinder = T = 21°C = 21 + 273 K = 294 K
PV = nRT ( ideal gas equation )


P = 23.88 atm ≈ 23.9
Partial pressure of the individual gas will be determined by the help of Dalton's law:
partial pressure = Total pressure × mole fraction of gas
Partial pressure of the oxygen gas


Partial pressure of the helium gas


well , it's true because they are of sp3d type occur on sets of four