By applying Pythagorean's theorem, the missing side of this right-angled triangle is: A. 7√3 inches.
<h3>How to find the missing side?</h3>
By critically observing the triangle shown in the image attached below, we can logically deduce that it is a right-angled triangle. Thus, we would find the missing side by applying Pythagorean's theorem:
z² = x² + y²
Also, the sides of this right-angled triangle are:
- Opposite side = x inches.
- Adjacent side = 7 inches.
Substituting the given parameters into the formula, we have;
14² = x² + 7²
196 = x² + 49
x² = 196 - 49
x² = 147
x = √147
x = √49 × √3
x = 7√3 inches.
Read more on Pythagorean theorem here: brainly.com/question/23200848
#SPJ1
Answer:
6,200
Step-by-step explanation:
19-20
307-310
310 x 20= 6,200 or 20 x 310= 6,200
Answer:
the answer is 4, just kidding it's 2
Step-by-step explanation:
Me I am very good at math I am a tutor
Answer:
x^4 -53x^2 +108x +160
Step-by-step explanation:
If <em>a</em> is a zero, then (<em>x-a</em>) is a factor. For the given zeros, the factors are ...
p(x) = (x +8)(x +1)(x -4)(x -5)
Multiplying these out gives the polynomial in standard form.
= (x^2 +9x +8)(x^2 -9x +20)
We note that these factors have a sum and difference with the same pair of values, x^2 and 9x. We can use the special form for the product of these to simplify our working out.
= (x^2 +9x)(x^2 -9x) +20(x^2 +9x) +8(x^2 -9x) +8(20)
= x^4 -81x^2 +20x^2 +180x +8x^2 -72x +160
p(x) = x^4 -53x^2 +108x +160
_____
The graph shows this polynomial has the required zeros.