Answer:
Second step: 2/2 does not give you 2.
It would be 2x + 1 - 4 = 3x - 3
Since he mess up on the second step, the following steps are also messed up
Using the fundamental counting theorem, we have that:
- 648 different area codes are possible with this rule.
- There are 6,480,000,000 possible 10-digit phone numbers.
- The amount of possible phone numbers is greater than 400,000,000, thus, there are enough possible phone numbers.
The fundamental counting principle states that if there are p ways to do a thing, and q ways to do another thing, and these two things are independent, there are ways to do both things.
For the area code:
- 8 options for the first digit.
- 9 options for the second and third.
Thus:

648 different area codes are possible with this rule.
For the number of 10-digit phone numbers:
- 7 digits, each with 10 options.
- 648 different area codes.
Then

There are 6,480,000,000 possible 10-digit phone numbers.
The amount of possible phone numbers is greater than 400,000,000, thus, there are enough possible phone numbers.
A similar problem is given at brainly.com/question/24067651
Answer:
Let X the random variable that represent the number of emails from students the day before the midterm exam. For this case the best distribution for the random variable X is
The probability mass function for the random variable is given by:

The best answer for this case would be:
C. Poisson distribution
Step-by-step explanation:
Let X the random variable that represent the number of emails from students the day before the midterm exam. For this case the best distribution for the random variable X is
The probability mass function for the random variable is given by:
And f(x)=0 for other case.
For this distribution the expected value is the same parameter
And for this case we want to calculate this probability:

The best answer for this case would be:
C. Poisson distribution
None. She ate the pound she bought.
Answer:
the 1/2 part of it is 1/2
Step-by-step explanation: