Answer:
Gravitational force is the force that attracts objects towards each other. Two factors that affect the gravitational force between objects are the mass of the two objects and the distance between
Explanation:
Gravity is what pulls us towards the Earth if we were to jump into the air, so it is the force that pulls things towards other things. The bigger the objects are the more gravity they have, so a planet has more gravity than say, an apple. Distance between objects also makes their gravity change, so the Earth's pull on the moon is different than the Earth's pull on the sun.
Hopefully this helps- let me know if you have any questions!
Answer:
44.64 seconds
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.8 m/s²


<u>Time taken to reach 1180 m is 11.29 seconds</u>

<u>Time the rocket will keep going up after the engines shut off is 13.06 seconds.</u>

The distance the rocket will keep going up after the engines shut off is 836.05 m
Total distance traveled by the rocket in the upward direction is 1180+836.05 = 2016.05 m
The rocket will fall from this height

<u>Time taken by the rocket to fall from maximum height is 20.29 seconds</u>
Time the rocket will stay in the air is 11.29+13.06+20.29 = 44.64 seconds
Here we can use ampere'a law to find the magnetic field





Answer:
Δx = 39.1 m
Explanation:
- Assuming that deceleration keeps constant during the braking process, we can use one of the kinematics equations, as follows:

where vf is the final velocity (0 in our case), v₀ is the initial velocity
(25 m/s), a is the acceleration (-8.0 m/s²), and Δx is the distance
traveled since the brakes are applied.
- Solving (1) for Δx, we have: