Does this help?
When an object is
immersed in a fluid (in this case water, but may include both liquids and
gases) the fluid exerts an upward force on the object which is called buoyancy
force or <span>up-thrust. Archimedes’ Principle states that the buoyant
force (upward push or force) applied to an object is equal to the weight of the fluid that the object takes the space of by
that object. Thus when an object is
placed in water the rise in the water level is dictated by the mass of that
object.</span>
<span>
</span>
<span>So for example if you fill a bucket with water and you drop a stone in that bucket, if you measure the weight of the water that overflows from the bucket due to the stone being dropped into the bucket is equivalent to the pushing force that the water has on the stone (as the stone drops to the bottom of the bucket the water is pushing it to stay afloat but the rock is more dense than water and as such its downthrust exceeds water's upthrust).</span>
The atomic number tells you the number of protons in an atom. This value never changes because the number of protons in the nucleus always remains constant. The mass number tells you the number of protons and neutrons (or nucleons) together: protons + neutrons = mass number. Since the number of neutrons in the nucleus varies, you can have different amounts of neutrons in the same type of atom. These varied types are called isotopes.
Hope this helps.
Answer:
Being a plane mirror the Image is formed 3 metres beyond the mirror . So total distance is 3+3 = 6metres
The SI unit of measure for work, as well as
for all other kinds of energy, is the "joule".
Strength of the magnetic field: 20 T
Explanation:
For a conductive wire moving perpendicular to a magnetic field, the electromotive force (voltage) induced in the wire due to electromagnetic induction is given by

where
B is the strength of the magnetic field
v is the speed of the wire
L is the length of the wire
For the wire in this problem, we have:
(induced emf)
L = 0.20 m (length of the wire)
v = 3.0 m/s (speed)
Solving for B, we find the strength of the magnetic field:

Learn more about magnetic fields:
brainly.com/question/3874443
brainly.com/question/4240735
#LearnwithBrainly