To solve this problem we will apply the concepts related to the centripetal Force and the Force given by weight and formulated in Newton's second law. Through the two expressions we can find the radius of curve made in the hand. To calculate the normal force, we will include the concepts of sum of forces to obtain the net force on the body at the top and bottom of the maneuver. The expression for centripetal force acting on the jet is

According to Newton's second law, the net force acting on the jet is
F = ma
Here,
m = mass
a = acceleration
v = Velocity
r = Radius
PART A ) Equating the above two expression the equation for radius is


Replacing with our values we have that
![r = \frac{(1140km/hr[\frac{1000m}{1km}\frac{1hour}{3600s}])^2}{7(9.8m/s^2)}](https://tex.z-dn.net/?f=r%20%3D%20%5Cfrac%7B%281140km%2Fhr%5B%5Cfrac%7B1000m%7D%7B1km%7D%5Cfrac%7B1hour%7D%7B3600s%7D%5D%29%5E2%7D%7B7%289.8m%2Fs%5E2%29%7D)

PART B )
<u>- The expression for effective weight of the pilot at the bottom of the circle is</u>

![N = (69kg)(9.8m/s^2)+\frac{(69)(1140km/hr[\frac{1000m}{1km}\frac{1hour}{3600s}])^2}{1.462*10^3m}](https://tex.z-dn.net/?f=N%20%3D%20%2869kg%29%289.8m%2Fs%5E2%29%2B%5Cfrac%7B%2869%29%281140km%2Fhr%5B%5Cfrac%7B1000m%7D%7B1km%7D%5Cfrac%7B1hour%7D%7B3600s%7D%5D%29%5E2%7D%7B1.462%2A10%5E3m%7D)

<em>Note that the normal reaction N is directed upwards and gravitational force mg is directed downwards. At the bottom of the circle, the centripetal force is directed upwards. So the centripetal force is obtained from the gravitational force and the normal reaction. </em>
<u>- The expression for effective weight of the pilot at the top of the circle is</u>

![N = (69kg)(9.8m/s^2)-\frac{(69)(1140km/hr[\frac{1000m}{1km}\frac{1hour}{3600s}])^2}{1.462*10^3m}](https://tex.z-dn.net/?f=N%20%3D%20%2869kg%29%289.8m%2Fs%5E2%29-%5Cfrac%7B%2869%29%281140km%2Fhr%5B%5Cfrac%7B1000m%7D%7B1km%7D%5Cfrac%7B1hour%7D%7B3600s%7D%5D%29%5E2%7D%7B1.462%2A10%5E3m%7D)

<em>Note that at the top of the circle the centripetal force is directed downwards. So the centripetal force is obtained from normal reaction and the gravitational force. </em>
Answer:
9.88 milivolt
Explanation:
Given: diameter d = 5.2 cm
magnetic field B_1 = 1.35 T, final magnetic field B_2 =0 T
t = 0.29 sec.
we know emf = - dΦ/dt
and flux Φ = BA
A= area
therefore emf ε = -A(B_2-B_1)/Δt

10.4 N
Given
m = 1.10 kg
θ = 15.0°
g = 9.81 m/s2
Solution
Fnet, y = ΣF y = Fn − Fg, y = 0
Fn = Fg, y = Fg
cosθ = mgcosθ
Fn = (1.10 kg)(9.81 m/s2
)(cos15.0°) = 10.4 N
Answer: 196 minutes
Explanation: 26.22/9.50 = 2.76
2 hours and 76 minutes equals 196 minutes
The type of mixture that is formed when a solid is stirred into a liquid and dissolves is called suspension. The particles involved or being mixed in this type of mixture is large enough that can be seen by the naked eye without the aid of any device. A suspension mixture has a heterogeneous mixture.