a=b=33400 J
c=4180 J
Further explanation
Heat can be calculated using the formula:
Q = mc∆T
Q = heat, J
m = mass, g
c = specific heat, joules / g ° C
∆T = temperature difference, ° C / K
The heat to change the phase can be formulated :
Q = mLf (melting/freezing)
Q = mLv (vaporization/condensation)
Lf=latent heat of fusion
Lv=latent heat of vaporization
The heat of fusion for water at 0 °C : 334 J/g and the heat of vaporization at 100 °C : 2,230J/g
a. melting

b. freezing

c.raise the temperature(c water = 4.18 J/g C)

Following Aufbau rule and Hund principle, the order of filling of the orbitals is this:

So, the first, second, and fourth option are not correct.
The third option does meet the filling order.
Answer:
<span>Carbon Monoxide.
First, determine the relative number of moles of each element by looking up the atomic weights of carbon and oxygen
Atomic weight carbon = 12.0107
Atomic weight oxygen = 15.999
Moles of Carbon = 24.50 g / 12.0107 g/mol = 2.039847802 mol
Moles of Oxygen = 32.59 g / 15.999 g/mol = 2.037002313 mol
Given that the number of moles of both carbon and oxygen are nearly identical, it wouldn't be unreasonable to think that the empirical formula for the compound is CO which also happens to be the formula for Carbon Monoxide.</span>
Answer:
They agree to ethical standards when they are licensed.
Explanation:
Solution :
In the process to isolate gold that has a 80 percent yield, a 3.00 g of Au is being isolated.
That is, the actual yield of Au is 3. 00 g
Therefore, we need to find the theoretical yield.
As we know,


As actual yield = 3.00 g
percent yield = 80 %
So, theoretical yield = 
= 3.75 g
Thus he should be able to get 3.75 g which is the theoretical yield of Au.