Answer:
191.36 N/m
Explanation:
From the question,
The Potential Energy of the safe = Energy of the spring when it was compressed.
mgh = 1/2ke²............... Equation 1
Where m = mass of the safe, g = acceleration due to gravity, h = height of the save above the heavy duty spring , k = spring constant, e = compression
Making k the subject of the equation,
k =2mgh/e²................ Equation 2
Given: m = 1100 kg, h = 2.4 mm = 0.0024 m, e = 0.52 m
Constant: g = 9.8 m/s²
Substitute into equation 2
k = 2(1100)(9.8)(0.0024)/0.52²
k = 51.744/0.2704
k = 191.36 N/m
Hence the spring constant of the heavy-duty spring = 191.36 N/m
It is like that, except most nails are steel or stainless steel, slowing to rusting process to about 5 years.
I believe the blank would simply be behaviour adaptations. Behavioural adaptations are behaviours that organisms demonstrate to help them better survive and reproduce in a habitat. Hope that helps!!
Answer:
1.
d
. A stream of particles
2. D. Radiowave
3. Microwaves
We can apply the law of conservation of energy here. The total energy of the proton must remain constant, so the sum of the variation of electric potential energy and of kinetic energy of the proton must be zero:

which means

The variation of electric potential energy is equal to the product between the charge of the proton (q=1eV) and the potential difference (

):

Therefore, the kinetic energy gained by the proton is

<span>And since the initial kinetic energy of the proton was zero (it started from rest), then this 1000 eV corresponds to the final kinetic energy of the proton.</span>