<span>The underlined place in 83.5851 which is then rounded to the nearest thousandth is </span>A. tenth; 83.585 .
Answer:
The answer is "120".
Step-by-step explanation:
Given values:
![F(x,y,z)=2x^2i+5y^2j+3z^2k \\](https://tex.z-dn.net/?f=F%28x%2Cy%2Cz%29%3D2x%5E2i%2B5y%5E2j%2B3z%5E2k%20%5C%5C)
differentiate the above value:
![div F =2 \frac{x^2i}{\partial x}+5 \frac{y^2j}{\partial y}+3 \frac{z^2k }{\partial z} \\](https://tex.z-dn.net/?f=div%20F%20%3D2%20%5Cfrac%7Bx%5E2i%7D%7B%5Cpartial%20x%7D%2B5%20%5Cfrac%7By%5E2j%7D%7B%5Cpartial%20y%7D%2B3%20%5Cfrac%7Bz%5E2k%20%7D%7B%5Cpartial%20z%7D%20%20%5C%5C)
![= 4x+10y+6z](https://tex.z-dn.net/?f=%3D%204x%2B10y%2B6z)
![\ flu \ of \ x = \int \int div F dx](https://tex.z-dn.net/?f=%5C%20flu%20%5C%20of%20%5C%20x%20%3D%20%5Cint%20%20%5Cint%20div%20F%20dx)
![= \int\limits^1_0 \int\limits^3_0 \int\limits^1_0 {(4x+10y+6z)} \, dx \, dy \, dz \\\\ = \int\limits^1_0 \int\limits^3_0 {(4xz+10yz+6z^2)}^{1}_{0} \, dx \, dy \\\\ = \int\limits^1_0 \int\limits^3_0 {(4x+10y+6)} \, dx \, dy \\\\ = \int\limits^1_0 {(4xy+10y^2+6y)}^3_{0} \, dx \\\\ = \int\limits^1_0 {(12x+90+18)}\, dx \\\\= {(12x^2+90x+18x)}^{1}_{0} \\\\= {(12+90+18)} \\\\=30+90\\\\= 120](https://tex.z-dn.net/?f=%3D%20%5Cint%5Climits%5E1_0%20%5Cint%5Climits%5E3_0%20%5Cint%5Climits%5E1_0%20%7B%284x%2B10y%2B6z%29%7D%20%5C%2C%20dx%20%5C%2C%20dy%20%5C%2C%20dz%20%5C%5C%5C%5C%20%3D%20%5Cint%5Climits%5E1_0%20%5Cint%5Climits%5E3_0%20%7B%284xz%2B10yz%2B6z%5E2%29%7D%5E%7B1%7D_%7B0%7D%20%5C%2C%20dx%20%5C%2C%20dy%20%20%5C%5C%5C%5C%20%3D%20%5Cint%5Climits%5E1_0%20%5Cint%5Climits%5E3_0%20%7B%284x%2B10y%2B6%29%7D%20%5C%2C%20dx%20%5C%2C%20dy%20%20%5C%5C%5C%5C%20%3D%20%5Cint%5Climits%5E1_0%20%20%7B%284xy%2B10y%5E2%2B6y%29%7D%5E3_%7B0%7D%20%5C%2C%20dx%20%20%20%5C%5C%5C%5C%20%3D%20%5Cint%5Climits%5E1_0%20%20%7B%2812x%2B90%2B18%29%7D%5C%2C%20dx%20%20%20%5C%5C%5C%5C%3D%20%7B%2812x%5E2%2B90x%2B18x%29%7D%5E%7B1%7D_%7B0%7D%20%20%20%5C%5C%5C%5C%3D%20%7B%2812%2B90%2B18%29%7D%20%20%20%5C%5C%5C%5C%3D30%2B90%5C%5C%5C%5C%3D%20120)
I think division, at least that's how I wrote it in school
Answer:
There is a site where you can look these up, Try to look it up on the internet heres some sites, For Homework: slader
math -
way
explanation:
I cannot read the images clearly