Explanation:
According to Buoyance equation,
m = ![[m' \times \frac{1 - \frac{d_{a}}{d_{w}}}{1 - \frac{d_{a}}{d}}]](https://tex.z-dn.net/?f=%5Bm%27%20%5Ctimes%20%5Cfrac%7B1%20-%20%5Cfrac%7Bd_%7Ba%7D%7D%7Bd_%7Bw%7D%7D%7D%7B1%20-%20%5Cfrac%7Bd_%7Ba%7D%7D%7Bd%7D%7D%5D)
where, m = true mass
m' = mass read from the balance = 17.320 g
= density of air = 0.0012 g/ml
= density of the balance = 7.5 g/ml
d = density of liquid octane = 0.7025 g/ml
Now, putting all the given values into the above formula and calculate the true mass as follows.
m =
= ![[17.320 g \times \frac{1 - \frac{0.0012 g/ml}{7.5 g/ml}}{1 - \frac{0.0012 g/ml}{0.7025}}]](https://tex.z-dn.net/?f=%5B17.320%20g%20%5Ctimes%20%5Cfrac%7B1%20-%20%5Cfrac%7B0.0012%20g%2Fml%7D%7B7.5%20g%2Fml%7D%7D%7B1%20-%20%5Cfrac%7B0.0012%20g%2Fml%7D%7B0.7025%7D%7D%5D)
=
= 17.317 g
Thus, we can conclude that the true mass of octane is 17.317 g.
Answer:
The right solution according to the question is provided below.
Explanation:
According to the question,
(a)
The initial conditions will be:
DO = 
= 
= 
The initial oxygen defict will be:
Do = 
= 
The initial BOD will be:
Lo = 
= 
= 
(b)
The time reach minimum DO:
tc = ![\frac{1}{(kr-kd)} ln{(\frac{0.76}{0.61} )[1-\frac{1.674(0.76-0.61)}{0.61\times 6.453} ]}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%28kr-kd%29%7D%20ln%7B%28%5Cfrac%7B0.76%7D%7B0.61%7D%20%29%5B1-%5Cfrac%7B1.674%280.76-0.61%29%7D%7B0.61%5Ctimes%206.453%7D%20%5D%7D)
= 
By putting the values of log, we get
= 
The distance to reach minimum DO will be:
Xc = 
= 
= 
Answer:
A. Elastic
Explanation:
an elastic collision is one which there is no overall loss of kinetic energy
Answer:
CO
Explanation:
the rest are elements. CO is made up of one carbon atom and one oxygen atom