Answer:
New volume is 14.35 mL
Explanation:
When a system of a gas keeps on constant its temperature and number of moles, the pressure is modified indirectly proportional to the volume:
Pressure increased → Volume decreased
Pressure decreased → Volume increased.
The relation you have to apply is: P₁ . V₁ = P₂. V₂
1.23 atm . 35 mL = 3 atm . V₂
(1.23 atm . 35 mL / 3 atm) = V₂
V₂ = 14.35 mL
Answer:
Most viscous to least viscous: 
Explanation:
For hydrocarbons, viscosity increases with increasing molar mass. Because increasing molar mass signifies increase in number of electrons in molecules.
We know that in non-polar hydrocarbons, only van der waal intermolecular force exists. Van der waal force is proportional to number of electrons in a molecule.
Therefore with increasing molar mass, van der waal force increases. hence molecules gets more tightly bind with each other resulting increase in viscosity.
Here molar mass order : 
Therefore viscosity order : 
Answer:
Answer is D
Explanation:
an increase in the number of protons
The pH of a solution is 9.02.
c(HCN) = 1.25 M; concentration of the cyanide acid
n(NaCN) = 1.37 mol; amount of the salt
V = 1.699 l; volume of the solution
c(NaCN) = 1.37 mol ÷ 1.699 l
c(NaCN) = 0.806 M; concentration of the salt
Ka = 6.2 × 10⁻¹⁰; acid constant
pKa = -logKa
pKa = - log (6.2 × 10⁻¹⁰)
pKa = 9.21
Henderson–Hasselbalch equation for the buffer solution:
pH = pKa + log(cs/ck)
pH = pKa + log(cs/ck)
pH = 9.21 + log (0.806M/1.25M)
pH = 9.21 - 0.19
pH = 9.02; potential of hydrogen
More about buffer: brainly.com/question/4177791
#SPJ4