Answer:

Step-by-step explanation:
![\ln \dfrac{4y^5}{x^2}\\\\=\ln(4y^5) - \ln(x^2)~~~~~~~~~~~;\left[ \log_b\left( \dfrac mn \right) = \log_b m - \llog_b n \right]\\\\=\ln 4 + \ln y^5 - 2\ln x~~~~~~~~~~~~;[\log_b m^n = n \log_b m ~\text{and}~\log_b(mn) = \log_b m + \log_b n ]\\\\=\ln 4 + 5 \ln y -2 \ln x\\\\=\ln 4 -2 \ln x +5 \ln y](https://tex.z-dn.net/?f=%5Cln%20%5Cdfrac%7B4y%5E5%7D%7Bx%5E2%7D%5C%5C%5C%5C%3D%5Cln%284y%5E5%29%20-%20%5Cln%28x%5E2%29~~~~~~~~~~~%3B%5Cleft%5B%20%5Clog_b%5Cleft%28%20%5Cdfrac%20mn%20%5Cright%29%20%20%3D%20%5Clog_b%20m%20-%20%5Cllog_b%20n%20%5Cright%5D%5C%5C%5C%5C%3D%5Cln%204%20%2B%20%5Cln%20y%5E5%20-%202%5Cln%20x~~~~~~~~~~~~%3B%5B%5Clog_b%20m%5En%20%3D%20n%20%5Clog_b%20m%20~%5Ctext%7Band%7D~%5Clog_b%28mn%29%20%3D%20%5Clog_b%20m%20%2B%20%5Clog_b%20n%20%5D%5C%5C%5C%5C%3D%5Cln%204%20%2B%205%20%5Cln%20y%20-2%20%5Cln%20x%5C%5C%5C%5C%3D%5Cln%204%20-2%20%5Cln%20x%20%2B5%20%5Cln%20y)
Answer: 15 girls
Step-by-step explanation:
27 - 3 = 24
24/2 = 12
12 boys
12 + 3 = 15
15 girls
15+ 12 = 27
C, not sure but C. It makes sense to me & I got it right when I did it
Answer:
<em>Choose the first alternative</em>

Step-by-step explanation:
<u>Probabilities</u>
The requested probability can be computed as the ratio between the number of ways to choose two sophomores in alternate positions
and the total number of possible choices
, i.e.

There are 6 sophomores and 14 freshmen to choose from each separate set. There are 20 students in total
We'll assume the positions of the selections are NOT significative, i.e. student A/student B is the same as student B/student A.
To choose 2 sophomores out of the 6 available, the first position has 6 elements to choose from, the second has now only 5

The total number of possible choices is

The probability is then

Choose the first alternative