What is the upper quartile, Q3, of the following data set? 54, 53, 46, 60, 62, 70, 43, 67, 48, 65, 55, 38, 52, 56, 41
scZoUnD [109]
The original data set is
{<span>54, 53, 46, 60, 62, 70, 43, 67, 48, 65, 55, 38, 52, 56, 41}
Sort the data values from smallest to largest to get
</span><span>{38, 41, 43, 46, 48, 52, 53, 54, 55, 56, 60, 62, 65, 67, 70}
</span>
Now find the middle most value. This is the value in the 8th slot. The first 7 values are below the median. The 8th value is the median itself. The next 7 values are above the median.
The value in the 8th slot is 54, so this is the median
Divide the sorted data set into two lists. I'll call them L and U
L = {<span>38, 41, 43, 46, 48, 52, 53}
U = {</span><span>55, 56, 60, 62, 65, 67, 70}
they each have 7 items. The list L is the lower half of the sorted data and U is the upper half. The split happens at the original median (54).
Q3 will be equal to the median of the list U
The median of U = </span>{<span>55, 56, 60, 62, 65, 67, 70} is 62 since it's the middle most value.
Therefore, Q3 = 62
Answer: 62</span>
Answer:
c ln (x^3/y^3)
Step-by-step explanation:
3 ln x - 3 lny
We know that a ln b = ln b^a
ln x^3 - ln y^3
We also know ln a - ln b = ln (a/b)
ln (x^3/y^3)
Answer:
60cm^2
Step-by-step explanation:
We assume that is a circumscribing quadrilateral, rather than one that is circumscribed. It is also called a "tangential quadrilateral" and its area is ...
K = sr
where s is the semi-perimeter, the sum of opposite sides, and r is the radius of the incircle.
K = (12 cm) (5cm) = 60 cm²
_____
A quadrilateral can only be tangential if pairs of opposite sides add to the same length. Hence the given sum is the semiperimeter.
Lines A and B are parallel to each other. Lines B and E are perpendicular to each other.
I MISS THE RAGEI MISS THE RAGEI MISS THE RAGEI MISS THE RAGEI MISS THE RAGEI MISS THE RAGEI MISS THE RAGE