Answer:
Let us take 'a' in the place of 'y' so the equation becomes
(y+x) (ax+b)
Step-by-step explanation:
Step 1:
(a + x) (ax + b)
Step 2: Proof
Checking polynomial identity.
(ax+b )(x+a) = FOIL
(ax+b)(x+a)
ax^2+a^2x is the First Term in the FOIL
ax^2 + a^2x + bx + ab
(ax+b)(x+a)+bx+ab is the Second Term in the FOIL
Add both expressions together from First and Second Term
= ax^2 + a^2x + bx + ab
Step 3: Proof
(ax+b)(x+a) = ax^2 + a^2x + bx + ab
Identity is Found .
Trying with numbers now
(ax+b)(x+a) = ax^2 + a^2x + bx + ab
((2*5)+8)(5+2) =(2*5^2)+(2^2*5)+(8*5)+(2*8)
((10)+8)(7) =(2*25)+(4*5)+(40)+(16)
(18)(7) =(50)+(20)+(56)
126 =126
Answer:
1/2
Step-by-step explanation:
30s = 1/4
30s=1/4
30s=1/4
Using the determinant method, the cross product is

so the answer is B.
Or you can apply the properties of the cross product. By distributivity, we have
(3i + 8j - 6k) x (-4i - 2j - 3k)
= -12(i x i) - 32(j x i) + 24(k x i) - 6(i x j) - 16(j x j) + 12(k x j) - 9(i x k) - 24(j x k) + 18(k x k)
Now recall that
- (i x i) = (j x j) = (k x k) = 0 (the zero vector)
- (i x j) = k
- (j x k) = i
- (k x i) = j
- (a x b) = -(b x a) for any two vectors a and b
Putting these rules together, we get
(3i + 8j - 6k) x (-4i - 2j - 3k)
= -32(-k) + 24j - 6k + 12(-i) - 9(-j) - 24i
= (-12 - 24)i + (24 + 9)j + (32 - 6)k
= -36i + 33j + 26k
Answer:
The z- score for a value of 3.99 will be 3.38.
Step-by-step explanation:
It is given that the mean of a set of data is -3.82 and its standard deviation is 2.31.
Thus, the value of the z-score=
=
=
=
=
Thus, the z- score for a value of 3.99 will be 3.38.
Answer: Right triangle
Step-by-step explanation: There is a 90 degree angle diagonal from the hypotenuse