I am typing this to get more answers for one of my tests good luck dawg
I think this is what you're after:
Cs(g) → Cs^+ + e⁻ ΔHIP = 375.7 kJ mol^-1 [1]
Convert to J and divide by the Avogadro Const to give E in J per photon
E = 375700/6.022×10^23 = 6.239×10^-19 J
Plank relationship E = h×ν E in J ν = frequency (Hz s-1)
Planck constant h = 6.626×10^-34 J s
6.239×10^-19 = (6.626×10^-34)ν
ν = 9.42×10^14 s^-1 (Hz)
IP are usually given in ev Cs 3.894 eV
<span>E = 3.894×1.60×10^-19 = 6.230×10^-19 J per photon </span>
Answer
Avogadro's number: One mole of any substance contains 6.022×10²³ molecules
Explanation
While finding the number of moles of oxygen molecules present in 3.65 moles of Na2SO4 the conversion factor used would be Avodagro's number, which is
One mole of any substance contains 6.022×10²³ molecules.
Answer:
3.2 × 10⁻⁸
Explanation:
Let's consider the solution of magnesium carbonate.
MgCO₃ ⇄ Mg²⁺(aq) + CO₃²⁻(aq)
We can relate the molar solubility (S) with the solubility product (Ksp) using an ICE chart.
MgCO₃ ⇄ Mg²⁺(aq) + CO₃²⁻(aq)
I 0 0
C +S +S
E S S
The Ksp is:
Ksp = [Mg²⁺] × [CO₃²⁻] = S × S = S² = (1.8 × 10⁻⁴)² = 3.2 × 10⁻⁸
<span> In order to create a complete full outer shell of electrons.
</span><span /><span>
</span>