Isn't it a because in b at the start of the equation the E in Fe just disappeared
Im sorry i dont know im sure someone will
<u>Answer:</u> The freezing point of solution is -0.454°C
<u>Explanation:</u>
Depression in freezing point is defined as the difference in the freezing point of pure solution and freezing point of solution.
The equation used to calculate depression in freezing point follows:

To calculate the depression in freezing point, we use the equation:

Or,

where,
Freezing point of pure solution = 0°C
i = Vant hoff factor = 2
= molal freezing point elevation constant = 1.86°C/m
= Given mass of solute (KCl) = 5.0 g
= Molar mass of solute (KCl) = 74.55 g/mol
= Mass of solvent (water) = 550.0 g
Putting values in above equation, we get:

Hence, the freezing point of solution is -0.454°C
Answer:

Explanation:
Hello there!
In this case, it is possible to propose an energy balance in order to illustrate how the heat released by the reaction is absorbed by the water:

Thus, since the heat released by the reaction is -112 kJ (-112000 J), it is possible to define the hear absorbed by the water in terms of mass, specific heat and temperature change:

In such a way, it is possible to define the final temperature as shown below:

Best regards!
The answer is (B) non metals are not very good at coducting electricity.
Hope this helps :).