Answer:
72 hope this helps you!?!?!!?
Replace every x you see in the function with 1 and simplify.
Let x be 1.
f(1) = 4(1)^2 -(1) + 3
f(1) = 4(1) - 1 + 3
f(1) = 4 - 1 + 3
f(1) = 3 + 3
f(1) = 6
Done!
Answer: cos(x)
Step-by-step explanation:
We have
sin ( x + y ) = sin(x)*cos(y) + cos(x)*sin(y) (1) and
cos ( x + y ) = cos(x)*cos(y) - sin(x)*sin(y) (2)
From eq. (1)
if x = y
sin ( x + x ) = sin(x)*cos(x) + cos(x)*sin(x) ⇒ sin(2x) = 2sin(x)cos(x)
From eq. 2
If x = y
cos ( x + x ) = cos(x)*cos(x) - sin(x)*sin(x) ⇒ cos²(x) - sin²(x)
cos (2x) = cos²(x) - sin²(x)
Hence:The expression:
cos(2x) cos(x) + sin(2x) sin(x) (3)
Subtition of sin(2x) and cos(2x) in eq. 3
[cos²(x)-sin²(x)]*cos(x) + [(2sen(x)cos(x)]*sin(x)
and operating
cos³(x) - sin²(x)cos(x) + 2sin²(x)cos(x) = cos³(x) + sin²(x)cos(x)
cos (x) [ cos²(x) + sin²(x) ] = cos(x)
since cos²(x) + sin²(x) = 1
Answer:
Cuáles son los números que completan correctamente la siguiente sucesión?
The Next Number Would 250 and 24
xXxAnimexXx
Answer:
m∠BDC = 43°
Step-by-step explanation:
According to the theorem every peripheral angle in the circle is equal to half value of central angle.
Angle m∠ADB is corresponding peripheral angle of central angle m∠AOB.
According to this m∠AOB = 2· m∠ADB = 2· 43 = 86°
If angle m∠BOC=m∠AOB= 86°
Angle m∠BDC is corresponding peripheral angle of central angle m∠BOC
According to this m∠BDC = m∠BOC/2 = 43°
Good luck!!!