Small, because 1 divided by 8 = 0.125, and 3 divided by 4 = .75 Hope this helps!
Answer:
Derived from the Pythagorean Theorem, the distance formula is used to find the distance between two points in the plane. The Pythagorean Theorem,
a
2
+
b
2
=
c
2
, is based on a right triangle where a and b are the lengths of the legs adjacent to the right angle, and c is the length of the hypotenuse. The relationship of sides
|
x
2
−
x
1
|
and
|
y
2
−
y
1
|
to side d is the same as that of sides a and b to side c. We use the absolute value symbol to indicate that the length is a positive number because the absolute value of any number is positive. (For example,
|
−
3
|
=
3
. ) The symbols
|
x
2
−
x
1
|
and
|
y
2
−
y
1
|
indicate that the lengths of the sides of the triangle are positive. To find the length c, take the square root of both sides of the Pythagorean Theorem.
c
2
=
a
2
+
b
2
→
c
=
√
a
2
+
b
2
It follows that the distance formula is given as
d
2
=
(
x
2
−
x
1
)
2
+
(
y
2
−
y
1
)
2
→
d
=
√
(
x
2
−
x
1
)
2
+
(
y
2
−
y
1
)
2
We do not have to use the absolute value symbols in this definition because any number squared is positive.
A GENERAL NOTE: THE DISTANCE FORMULA
Given endpoints
(
x
1
,
y
1
)
and
(
x
2
,
y
2
)
, the distance between two points is given by
d
=
√
(
x
2
−
x
1
)
2
+
(
y
2
−
y
1
)
2
Step-by-step explanation:
This would be an increase. You would have one fraction with 46 over 24 and next to it you would have X over 100. Multiply 46 times 100 and then divide that number by 24. This would be an increase of approximately 191.6
Step 1. Divide both side by 16
100/16 = 6t - 13
Step 2. Dimplify 200/16 to 25/2
25/2 = 6t - 13
Step 3. Add 13 to both sides
25/2 + 13 = 6t
Step 4. Simplify 25/2 + 13 to 51/2
51/2 = 6t
Step 5. Divide both sides by 6
51/2/6 = t
Step 6. Simplify 51/2/6 to 51/2 * 6
51/2 * 6 = t
Step 7. Simplify 2 * 6 to 12
51/12 = t
Step 8. Simplify 51/12 to 17/4
17/4 = t
Step 9. Switch sides
t = 17/4