Answer:
As the planets are very small and dark in comparison with stars, it makes them very hard to be found from earth.
Explanation:
Astronomy, of course, has a solution for this. As astronomers can't observe planets directly, they decided to observe the stars and search for the effects that planets have on them.
There are many ways of observing the exoplanets: Radial Velocity, Transit Photometry, Microlensing, Astrometry, Direct Imaging, etc.
Before all of this, scientist had to find ways to prove their theories. Most of their time they have spent in giving the creative answers.
Science and creativity are very much connected when we speak about the development of science. Rationality and creativity always go together.
In order to create an idea that other people will consider useful, it is important to use creativity. As no one has the exact answer when it comes to science, the adventure is to research the unknown.
Answer:
θ₁ = 0.5 revolution
Explanation:
We will use the conservation of angular momentum as follows:

where,
I₁ = initial moment of inertia = 18 kg.m²
I₂ = Final moment of inertia = 3.6 kg.m²
ω₁ = initial angular velocity = ?
ω₂ = Final Angular velocity =
= 1.67 rev/s
Therefore,

where,
θ₁ = revolutions if she had not tucked at all = ?
t₁ = time = 1.5 s
Therefore,

<u>θ₁ = 0.5 revolution</u>
The first notion of the number of molecules per atom <span>was calculated by Josef Loschmidt which he endeavored to complete in 1895. In his experiment, he determined the number of molecules in one cubic centimeter of gas under STP. this is equal to approx 2.6 x 10^19 molecules. The former is called "Loschmidt's Constant" instead.</span>
When conducting and experiment you want to have a notebook and something to write down notes with so you can keep everything organized and proper, and to not miss anything in the experiment. Also you want to have everything in order of the way it should be in.
I hope you found this helpful!
Answer:

Explanation:
First of all, let's calculate the energy of a single photon of wavelength

which is given by

The power of the flash is

and the time it lasts is

so the total energy delivered in one flash is

This energy contains exactly N photons each of energy
, so the number of photons emitted in one flash is
