Answer:
a. plays a role in analgesia and the rewarding effects of morphine.
Explanation:
Mu receptors are receptors that have a strong analgesic action. These receptors are opioid receptors, which are cellular receptors for neurotransmitters present in the human nervous system, to which opioids attach. As already mentioned, the mu receptor has a strong analgesic action and plays a role in analgesia and the gratifying effects of morphine.
The average force is -212.4 N
Explanation:
We can solve this problem by using the impulse theorem, which states that the impulse exerted on the object (the product of the force exerted and the time) is equal to the change in momentum of the object:

where
F is the net force on the object
is the time
m is the mass
is the change in velocity
In this problem, we have:
m = 26.3 kg

Solving for F, we find

where the negative sign indicates that the direction of the force is opposite to the motion of the object.
Learn more about force and momentum:
brainly.com/question/9484203
#LearnwithBrainly
Answer: The small spherical planet called "Glob" has a mass of 7.88×1018 kg and a radius of 6.32×104 m. An astronaut on the surface of Glob throws a rock straight up. The rock reaches a maximum height of 1.44×103 m, above the surface of the planet, before it falls back down.
1) the initial speed of the rock as it left the astronaut's hand is 19.46 m/s.
2) A 36.0 kg satellite is in a circular orbit with a radius of 1.45×105 m around the planet Glob. Then the speed of the satellite is 3.624km/s.
Explanation: To find the answer, we need to know about the different equations of planetary motion.
<h3>How to find the initial speed of the rock as it left the astronaut's hand?</h3>
- We have the expression for the initial velocity as,

- Thus, to find v, we have to find the acceleration due to gravity of glob. For this, we have,

- Now, the velocity will become,

<h3>How to find the speed of the satellite?</h3>
- As we know that, by equating both centripetal force and the gravitational force, we get the equation of speed of a satellite as,

Thus, we can conclude that,
1) the initial speed of the rock as it left the astronaut's hand is 19.46 m/s.
2) A 36.0 kg satellite is in a circular orbit with a radius of 1.45×105 m around the planet Glob. Then the speed of the satellite is 3.624km/s.
Learn more about the equations of planetary motion here:
brainly.com/question/28108487
#SPJ4
Answer:
Corect answer is D
Explanation:
Assuming that the C
O
2 gas is behaving ideally, therefore, we can use the ideal gas law to find the pressure increase in the container by:
P
V=nRT ⇒ P=n
R
T
/V
n=no of moles of the gas = mass/molar mass
Molar mass o f C
O
2=44g/mol, mass = 44g
mole n = 1mole
T=20C=293K
R=0.0821L.atm/mol.K
P=nRT/V
P = 1 x 0.0821 x 293/2
P = 12atm
The Quantum Theory
Hope this helps