Answer:
Option 3. 71 ft. is the distance between B and top of the hill.
Step-by-step explanation:
Let the height of the hill is h ft and the distance of A from the hill be x ft and distance from B to hill is y.
It is given distance between A and B is 45 ft. ∠BAO = 65° and ∠ABO = 80°.
We have to find the distance of B from the top of the hill.
Now from ΔACO 

From ΔBCO 
h = 5.67x
Now h = 5.67x = 2.14(45-x)
5.67x = 96.3 - 2.14x
2.14x + 5.67x = 96.3
7.81x = 96.3
x = 96.3/7.81 = 12.33 ft
Therefore 


Therefore 71 ft is the distance between B and the top of the hill.
I can't see the picture, can you please explain the problem in the comment bar below this so can edit my answer to help?
The one u clicked one is the answer ?
The maximum speed of a boat at 30 feet length of water is 0.093 nautical miles/hour or knots.
<u>Step-by-step explanation:</u>
- The equation for the maximum speed, s is given by s²= (16/9)x
- where, x is the length of the water line in feet.
It is given that, the modeled equation s²= (16/9)x is used to find the maximum speed in knots or nautical miles per hour.
The question is asked to find the maximum speed when the length of the water is 30 feet.
Therefore, to find the maximum speed in 30 feet water, the given modeled equation is used. So, substitute the 30 feet in place of x.
<u>Now, calculating the maximum speed :</u>
s² = (16/9)(30)
s² = 480 / 9
s² = 53.3
Taking square root on both sides,
s = √53.3
s = 7.3
The maximum speed of a boat at 30 feet length of water is 7.3 nautical miles/hour or knots.
Answer:
Bye
Step-by-step explanation:
So 1/1/1/1