Answer:
Explanation:
The principle applied is the Markovnikoff's rule which states that when hydrogen chloride adds to a double bond, the hydrogen atoms join to the carbon that already has the most hydrogen atoms bonded to it. The rule wa postulated by a russian chemist known as Vladimir Markovnikoff.
In the markovnikoff's rule, there are sveral conditions that must be met, one of them is that no free radicals must be involved.
The reaction and the structure of the product is as shown in the attachment.
Across a period I.E increases progressively from left to right
Explanation:
The trend of the first ionization energy is such that across a period I.E increases from left to right due to the decreasing atomic radii caused by the increasing nuclear charge. This not compensated for by successive electronic shells.
- Ionization energy is a measure of the readiness of an atom to lose an electron.
- The lower the value, the easier it is for an atom to lose an electron.
- Elements in group I tend to lose their electrons more readily whereas the halogens hold most tightly to them.
- The first ionization energy is the energy needed to remove the most loosely bonded electron of an atom in the gaseous phase.
Learn more:
Ionization energy brainly.com/question/6324347
#learnwithBrainly
Answer:
A. 2,3 BPG
Explanation:
2,3-bisphosphoglycerate (BPG), otherwise known as 2,3-DPG, enables the transition of hemoglobin from a very high-oxygen-affinity state to a reduced-oxygen-affinity state.
Tissues hemoglobin oxygen affinity is reduced by numerous physiological factors including.
1. Temperature Increased,
2. Carbon dioxide,
3. Acid and
4. 2,3-Bisphosphoglycerate (2,3-BPG)
all of which can contribute to decrease the oxygen affinity of hemoglobin which favours unloading and increased oxygen availability to our body cells.
Carbonic acid ---> water + carbon dioxide
so it's the second option