1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sukhopar [10]
3 years ago
7

I need help with this problem 23 in to 61,982 not sure how to work the problem

Mathematics
1 answer:
Korolek [52]3 years ago
6 0
What exactly is the problem? , there isn’t a photo or a description of what the problem is.
You might be interested in
Kate collected a sample of monthly rents and recorded the following numbers:
d1i1m1o1n [39]
C) will not effected (the most frequent is still 600$)
8 0
3 years ago
Y=(x+4)^2+4 in standard form
gogolik [260]

Answer:

y=x²+8x+20

Step-by-step explanation:

y=(x+4)^2+4

y=(x+4)² + 4

y=(x+4)(x+4)+4

Expanding the bracket

y=(x²+4x+4x+16)+4

y=x²+8x+16+4

y=x²+8x+20

5 0
3 years ago
Assume a jar has five red marbles and three black marbles. Draw out two marbles with and without replacement. Find the requested
Doss [256]

Answer:

<u>For probabilities with replacement</u>

P(2\ Red) = \frac{25}{64}

P(2\ Black) = \frac{9}{64}

P(1\ Red\ and\ 1\ Black) = \frac{15}{32}

P(1st\ Red\ and\ 2nd\ Black) = \frac{15}{64}

<u>For probabilities without replacement</u>

P(2\ Red) = \frac{5}{14}

P(2\ Black) = \frac{3}{28}

P(1\ Red\ and\ 1\ Black) = \frac{15}{28}

P(1st\ Red\ and\ 2nd\ Black) = \frac{15}{56}

Step-by-step explanation:

Given

Marbles = 8

Red = 5

Black = 3

<u>For probabilities with replacement</u>

(a) P(2 Red)

This is calculated as:

P(2\ Red) = P(Red)\ and\ P(Red)

P(2\ Red) = P(Red)\ *\ P(Red)

So, we have:

P(2\ Red) = \frac{n(Red)}{Total} \ *\ \frac{n(Red)}{Total}\\

P(2\ Red) = \frac{5}{8} * \frac{5}{8}

P(2\ Red) = \frac{25}{64}

(b) P(2 Black)

This is calculated as:

P(2\ Black) = P(Black)\ and\ P(Black)

P(2\ Black) = P(Black)\ *\ P(Black)

So, we have:

P(2\ Black) = \frac{n(Black)}{Total}\ *\ \frac{n(Black)}{Total}

P(2\ Black) = \frac{3}{8}\ *\ \frac{3}{8}

P(2\ Black) = \frac{9}{64}

(c) P(1 Red and 1 Black)

This is calculated as:

P(1\ Red\ and\ 1\ Black) = [P(Red)\ and\ P(Black)]\ or\ [P(Black)\ and\ P(Red)]

P(1\ Red\ and\ 1\ Black) = [P(Red)\ *\ P(Black)]\ +\ [P(Black)\ *\ P(Red)]

P(1\ Red\ and\ 1\ Black) = 2[P(Red)\ *\ P(Black)]

So, we have:

P(1\ Red\ and\ 1\ Black) = 2*[\frac{5}{8} *\frac{3}{8}]

P(1\ Red\ and\ 1\ Black) = 2*\frac{15}{64}

P(1\ Red\ and\ 1\ Black) = \frac{15}{32}

(d) P(1st Red and 2nd Black)

This is calculated as:

P(1st\ Red\ and\ 2nd\ Black) = [P(Red)\ and\ P(Black)]

P(1st\ Red\ and\ 2nd\ Black) = P(Red)\ *\ P(Black)

P(1st\ Red\ and\ 2nd\ Black) = \frac{n(Red)}{Total}  *\ \frac{n(Black)}{Total}

So, we have:

P(1st\ Red\ and\ 2nd\ Black) = \frac{5}{8} *\frac{3}{8}

P(1st\ Red\ and\ 2nd\ Black) = \frac{15}{64}

<u></u>

<u>For probabilities without replacement</u>

(a) P(2 Red)

This is calculated as:

P(2\ Red) = P(Red)\ and\ P(Red)

P(2\ Red) = P(Red)\ *\ P(Red)

So, we have:

P(2\ Red) = \frac{n(Red)}{Total} \ *\ \frac{n(Red)-1}{Total-1}

<em>We subtracted 1 because the number of red balls (and the total) decreased by 1 after the first red ball is picked.</em>

P(2\ Red) = \frac{5}{8} * \frac{4}{7}

P(2\ Red) = \frac{5}{2} * \frac{1}{7}

P(2\ Red) = \frac{5}{14}

(b) P(2 Black)

This is calculated as:

P(2\ Black) = P(Black)\ and\ P(Black)

P(2\ Black) = P(Black)\ *\ P(Black)

So, we have:

P(2\ Black) = \frac{n(Black)}{Total}\ *\ \frac{n(Black)-1}{Total-1}

<em>We subtracted 1 because the number of black balls (and the total) decreased by 1 after the first black ball is picked.</em>

P(2\ Black) = \frac{3}{8}\ *\ \frac{2}{7}

P(2\ Black) = \frac{3}{4}\ *\ \frac{1}{7}

P(2\ Black) = \frac{3}{28}

(c) P(1 Red and 1 Black)

This is calculated as:

P(1\ Red\ and\ 1\ Black) = [P(Red)\ and\ P(Black)]\ or\ [P(Black)\ and\ P(Red)]

P(1\ Red\ and\ 1\ Black) = [P(Red)\ *\ P(Black)]\ +\ [P(Black)\ *\ P(Red)]

P(1\ Red\ and\ 1\ Black) = [\frac{n(Red)}{Total}\ *\ \frac{n(Black)}{Total-1}]\ +\ [\frac{n(Black)}{Total}\ *\ \frac{n(Red)}{Total-1}]

So, we have:

P(1\ Red\ and\ 1\ Black) = [\frac{5}{8} *\frac{3}{7}] + [\frac{3}{8} *\frac{5}{7}]

P(1\ Red\ and\ 1\ Black) = [\frac{15}{56} ] + [\frac{15}{56}]

P(1\ Red\ and\ 1\ Black) = \frac{30}{56}

P(1\ Red\ and\ 1\ Black) = \frac{15}{28}

(d) P(1st Red and 2nd Black)

This is calculated as:

P(1st\ Red\ and\ 2nd\ Black) = [P(Red)\ and\ P(Black)]

P(1st\ Red\ and\ 2nd\ Black) = P(Red)\ *\ P(Black)

P(1st\ Red\ and\ 2nd\ Black) = \frac{n(Red)}{Total}  *\ \frac{n(Black)}{Total-1}

So, we have:

P(1st\ Red\ and\ 2nd\ Black) = \frac{5}{8} *\frac{3}{7}

P(1st\ Red\ and\ 2nd\ Black) = \frac{15}{56}

7 0
3 years ago
Find the values of x y and z in the triangle to the right
vlabodo [156]
Can I see the triangle pls
7 0
3 years ago
How do u factor out the coefficient of the variable??? 1/2Q+5/2
svlad2 [7]
1/2 Q+5/2
divide 1/2 into each term
to divide multiply by the reciprocal
1/2 x2/1= 1
5/2 x 2/1=5

1/2(Q+5)  hope this helps
3 0
3 years ago
Read 2 more answers
Other questions:
  • Write the equation in point slope form number 8 please.
    7·1 answer
  • Find the area of a square with a side measure of 3x − 6 feet. Question 5 options: 9x2−36x+36 sq. ft. 9x2−6 sq. ft. 9x2+36x+36 sq
    14·1 answer
  • A book is on sale for $8.93. The sale price is 15% off the original price. What was the
    10·2 answers
  • Tony wants to purchase a baseball glove for $14.96, a baseball bat for $19.87, and a baseball for $5.37. He figured out that he
    6·1 answer
  • 99÷9.801. Find the quotation
    15·2 answers
  • Solve x show your work
    14·1 answer
  • Which numbers below represents a repeating decimals? -2/5,-7,3/9,11/12
    12·1 answer
  • Intro to inequalities 16&gt;f, if f=17
    12·2 answers
  • Find the value of x. Round to the<br> nearest tenth.<br> 26<br> 12<br> X<br> x = [?]
    7·1 answer
  • What is 1/2y+3.2=20? Does it have no solution?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!