Answer:
10. 27 shoes
11. No, both are 18, they are equal
12. 96 dogs
13. 125 students
14. 600 students
15. 50 tulips
16. 70 cars
17. Rory divided the percentage by the number (#/%=#)
Step-by-step explanation:
To find a percentage of somethin, multiply the number by the percent
(54 shoes x 50% (0.50) = 27 shoes)
To find the original number, divide the new number by the percentage
(25 students/20% (0.20) = 125 students)
Answer:

Domain: All Real Numbers
General Formulas and Concepts:
<u>Algebra I</u>
- Domain is the set of x-values that can be inputted into function f(x)
<u>Calculus</u>
The derivative of a constant is equal to 0
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Chain Rule: ![\frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
Derivative: ![\frac{d}{dx} [ln(u)] = \frac{u'}{u}](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%20%5Bln%28u%29%5D%20%3D%20%5Cfrac%7Bu%27%7D%7Bu%7D)
Step-by-step explanation:
<u>Step 1: Define</u>
f(x) = ln(2x² + 1)
<u>Step 2: Differentiate</u>
- Derivative ln(u) [Chain Rule/Basic Power]:

- Simplify:

- Multiply:

<u>Step 3: Domain</u>
We know that we would have issues in the denominator when we have a rational expression. However, we can see that the denominator would never equal 0.
Therefore, our domain would be all real numbers.
We can also graph the differential function to analyze the domain.
Answer:
Equation in square form:

Extreme value:

Step-by-step explanation:
We are given

we can complete square

we can use formula


now, we can add and subtract 5^2



So, we get equation as

Extreme values:
we know that this parabola
and vertex of parabola always at extreme values
so, we can compare it with

where
vertex=(h,k)
now, we can compare and find h and k

we get
h=-5
k=-4
so, extreme value of this equation is

We solve this by the definition of slope in analytical geometry. The definition of slope is the rise over run. In equation, that would be
m = Δy/Δx = (y₂-y₁)/(x₂-x₁)
The x-coordinates here are the t values, while the y-coordinates are the f(t) values. So, let's find the y values of the boundaries.
At t=2: f(t)= 0.25(2)²<span> − 0.5(2) + 3.5 = 3.5
Point 1 is (2, 3.5)
At t=6: </span>f(t)= 0.25(6)² − 0.5(6) + 3.5 = 9.5
Point 2 is (6, 9.5)
The slope would then be
m = (9.5-3.5)/(6-2)
m = 1.5
Hence, the slope is 1.5. Interpreting the data, the rate of change between t=2 and t=6 is 1.5 thousands per year.