1. Start with ΔCIJ.
- ∠HIC and ∠CIJ are supplementary, then m∠CIJ=180°-7x;
- the sum of the measures of all interior angles in ΔCIJ is 180°, then m∠CJI=180°-m∠JCI-m∠CIJ=180°-25°-(180°-7x)=7x-25°;
- ∠CJI and ∠KJA are congruent as vertical angles, then m∠KJA =m∠CJI=7x-25°.
2. Lines HM and DG are parallel, then ∠KJA and ∠JAB are consecutive interior angles, then m∠KJA+m∠JAB=180°. So
m∠JAB=180°-m∠KJA=180°-(7x-25°)=205°-7x.
3. Consider ΔCKL.
- ∠LFG and ∠CLM are corresponding angles, then m∠LFG=m∠CLM=8x;
- ∠CLM and ∠CLK are supplementary, then m∠CLM+m∠CLK=180°, m∠CLK=180°-8x;
- the sum of the measures of all interior angles in ΔCLK is 180°, then m∠CKL=180°-m∠CLK-m∠LCK=180°-(180°-8x)-42°=8x-42°;
- ∠CKL and ∠JKB are congruent as vertical angles, then m∠JKB =m∠CKL=8x-42°.
4. Lines HM and DG are parallel, then ∠JKB and ∠KBA are consecutive interior angles, then m∠JKB+m∠KBA=180°. So
m∠KBA=180°-m∠JKB=180°-(8x-42°)=222°-8x.
5. ΔABC is isosceles, then angles adjacent to the base are congruent:
m∠KBA=m∠JAB → 222°-8x=205°-7x,
7x-8x=205°-222°,
-x=-17°,
x=17°.
Then m∠CAB=m∠CBA=205°-7x=86°.
Answer: 86°.
Answer:
By taking (-1, 1) and translating it left by 2 and up by D we have (-3, 1+D)
Rotating 90° counterclockwise puts a negative on your y-coordinate and switches the x and y-coordinates.
Final answer:
(-1-D, -3)
<em>Your </em><em>well </em><em>wisher </em><em>:-)</em>
Answer: 7638373
Step-by-step explanation:
easy way...
multiply Base x height (for both)
30 inches x 12 inches = 360 in
16 in. x 12 in = 192 in.
then add both
360 + 192 = 552
A=552 in²