I'm sure you've noticed that an airplane high in the sky, far away
from you, looks like it's moving very slowly. At the same time,
somebody passing you on a skateboard whizzes past you at
high speed. The farther away something is from you, the slower
it appears to move.
The nearest star outside the solar system is almost 32 thousand times
as far away from us as the farthest visible planet (Saturn) is, and all of the
other stars are farther than that.
That's why you have to wait a few thousand years before you notice
that the shape of a constellation has changed.
To put it a slightly different way . . . Everything is in motion. The motion is
more noticeable for nearby things, and less noticeable for farther-away things.
Objects within our solar system are the only ones near enough so that a human
lifetime is a long enough period in which to notice the change in their position.
Even Pluto moves less then 1.5° against the 'background' stars in a whole year.
This all makes me feel small. How about you ?
Answer:
I hear points of low volume sound and points of high volume of sound.
Explanation:
This is because, since the two sources of sound have the same frequency and are separated by a distance, d = 10 mm, there would be successive points of constructive and destructive interference.
Since their frequencies are similar, we should have beats of high and low frequency.
So, at points of low frequency, the amplitude of the wave is smallest and there is destructive interference. The frequency at this point is the difference between the frequencies from both speakers. Since the frequency from both speakers is 400 Hz, we have, f - f' = 400 Hz - 400 Hz = 0 Hz. So, the volume of the sound is low(zero) at these points.
Also, at points of high frequency, the amplitude of the wave is highest and there is constructive interference. The frequency at this point is the sum between the frequencies from both speakers. Since the frequency from both speakers is 400 Hz, we have, (f + f') = 400 Hz + 400 Hz = 800 Hz. So, the volume of the sound is high at these points.
So, as you wander around the room, I should hear points of high and low sound across the room.
The correct answer is “C” ultrasound. Hope this helps!
Answer:
The ball is dropped at a height of 9.71 m above the top of the window.
Explanation:
<u>Given:</u>
- Height of the window=1.5 m
- Time taken by ball to cover the window height=0.15
Now using equation of motion in one dimension we have

Let u be the velocity of the ball when it reaches the top of the window
then

Now u is the final velocity of the ball with respect to the top of the building
so let t be the time taken for it to reach the top of the window with this velocity

Let h be the height above the top of the window

Answer:
Ground-state atom
Explanation:
When an atom is not excited, it is in its ground-state, which we refer as "standard" or "normal" state.
(Hopefully that helped you!)
GOOD LUCK
Astrophysicist Dr. D