1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mrrafil [7]
2 years ago
10

Two gliders collide on an air track. Glider 1 has a mass of 7.0 kg, and glider 2 has a mass of 4.0 kg. Before the collision, gli

der 1 had a velocity of 2.0 m/s, and glider 2 had a velocity of -5.0 m/s. If the collision is perfectly elastic, what is the total kinetic energy of both gliders after the collision?
A. -36.0 J
B. 36.0 J
C. 64.0 J
D. 128.0 J
Physics
1 answer:
zmey [24]2 years ago
7 0

Answer:

Its C

Explanation:

My teacher did it for me and it was right.

You might be interested in
What characteristics of EM waves did you discover?
jarptica [38.1K]

The characteristics of electromagnetic waves typically represent as follows:

  • There are changes in the electric and magnetic fields simultaneously so that both fields have maximum and minimum values ​​at the same time and place.
  • The direction of the electric field and the magnetic field are perpendicular to each other. The direction of both is perpendicular to the direction of the wave propagation.
  • The shape of electromagnetic waves is transverse waves.
  • It has general wave characteristics like polarization, reflection, refraction, interference, and diffraction.
  • The amount of the electric field (E) is directly proportional to the magnitude of the magnetic field, with the relationship E = cB.
  • The universal constant of the velocity of electromagnetic waves in a vacuum is \boxed{ \ c = 3 \times 10^8 \ m/s. \ }
  • The speed at which electromagnetic waves propagate depends merely on the electrical and magnetic properties of the medium that it travels on.
  • Because electromagnetic waves do not contain an electric charge, they do not experience any possible deviation in the electric or magnetic fields.
<h3>Further explanation</h3>
  • Two physicists who contributed significantly to developing the concept of electromagnetic waves are Faraday and Maxwell around 1831-1864.
  • From the observations, Faraday suggested that changes in the magnetic field cause an electric charge to flow in the loop of wire, contributing in the emergence of an electric field.
  • Maxwell proposed a reverse process, which is a change in the electric field will generate a magnetic field.
  • As follows, according to Faraday's Law, changes in sinusoidal magnetic fields generate electric fields which also change sinusoidally.
  • Meantime, according to Maxwell's Hypothesis, changes in sinusoidal electric fields generate magnetic fields which also change sinusoidally.
  • Furthermore, there is a process of combining electric and magnetic fields that propagate in all directions called electromagnetic waves.
<h3>Learn more </h3>
  1. About vector components brainly.com/question/1600633
  2. Determine the shortest wavelength in electron transition brainly.com/question/4986277
  3. Particle's speed and direction of motion brainly.com/question/2814900

Keywords: the characteristics, electromagnetic waves, transverse, vacuum, electric fields, magnetic, perpendicular, propagation, Maxwell, Faraday, the speed, polarization, reflection, refraction, interference, and diffraction

4 0
3 years ago
Read 2 more answers
A mass on the end of a spring undergoes simple harmonic motion. At the instant when the mass is at its maximum displacement from
Mrac [35]

Answer:

C) True. At maximum displacement, its instantaneous velocity is zero.

Explanation:

The simple harmonic movement is given by

        x = A cos wt

Speed

        v = - A w sin wt

At the point of maximum displacement x = A

       A = A cos wt

      cos wt = 1

      wt = 0

We replace the speed

       v = -Aw sin 0 = A w

Speed ​​is maximum

Let's review the claims

A) False. Speed ​​is zero

B) False. It can be determined

C) True. Agree with our result

D) False. When one is maximum the other is minimum

4 0
3 years ago
Which of the following statements best describes the relationship between force and work?
viktelen [127]

a).,  b).,  and  c).  are completely false. 
There isn't a grain of truth among them.

In Physics, the technical definition of 'Work' is (force) times (distance).

7 0
3 years ago
An object of mass 2.0 kg is attached to the top of a vertical spring that is anchored to the floor. The unstressed length of the
poizon [28]

Answer:

The value is A  =  0.014 \  m

Explanation:

From the question we are told that

    The mass of the object is  m  =  2.0 \  kg

    The unstressed length of the string is  l  =  0.08 \  m

    The length of the spring when it is  at equilibrium is  l_e = 5.9 \  cm  =  0.059 \  m

      The initial speed (maximum speed)of the spring when given a downward blow v  =  0.30 \  m/s

Generally the maximum speed  of the spring  is mathematically represented as

           u =  A *  w

Here A is maximum height above the floor (i.e the maximum amplitude)

            and w is the angular frequency which is mathematically represented as

       w = \sqrt{\frac{k}{m} }

So

        u =  A *   \sqrt{\frac{k}{m} }

=>      A  =  u *   \sqrt{\frac{m}{k} }

Gnerally the length of the compression(Here an assumption that the spring was compressed to the ground by the hammer is made) by the hammer is mathematically represented as

           b  =  l -l_e

=>         b  = 0.08 - 0.05 9

=>         b  = 0.021 \  m

Generally at equilibrium position the net force acting on the spring is  

            k *  b  -  mg  =  0

=>         k *  0.021   -   2 * 9.8  =  0

=>        k =  933 \  N/m

So

            A  =  0.30  *   \sqrt{\frac{2}{933} }

=>          A  =  0.014 \  m

8 0
3 years ago
It is known that birds can detect the earth's magnetic field, but the mechanism of how they do this is not known. It has been su
Lubov Fominskaja [6]

Answer:

A) 0.50 mV

Explanation:

In this problem, we can think the wings of the bird as a metal rod moving across a magnetic field. So, and emf will be induced into the wings of the bird, according to the formula:

\epsilon = BvL sin \theta

where

B=5\cdot 10^{-5} T is the strength of the magnetic field

v = 13 m/s is the speed of the bird

L = 1.2 m is the wingspan of the bird

\theta=40^{\circ} is the angle between the direction of motion and the direction of the magnetic field

Substituting numbers into the formula, we find

\epsilon = (5.0\cdot 10^{-5} T)(13 m/s)(1.2 m) sin 40^{\circ}=0.00050 V = 0.50 mV

8 0
3 years ago
Other questions:
  • A cart of mass M is attached to an ideal spring that can stretch and compress equally well. The cart and spring rest on a smooth
    10·1 answer
  • In 1986, several robotic spacecrafts were sent into space to study the Halley's Comet. Which of these statements best explains w
    14·1 answer
  • If a certain mass of mercury has a volume of 0.002 m^3 at a temperature of 20°c, what will be the volume at 50°c
    8·2 answers
  • How many significant digits are in the measurement 50.003010 nm?
    14·2 answers
  • An investigator is using a laser to illuminate a distant target. He decides that he needs a smaller beam, so he puts a pinhole d
    14·1 answer
  • A car with a velocity of 15 m/s is accelerated uniformly at the rate of 1.9 m/s2 for 6.8 s. What is its final velocity?
    8·1 answer
  • Question 1 of 25
    7·2 answers
  • PLEASE HELP WILL GIVE BRAINIEST!!!!!!
    7·1 answer
  • A 432 g sample of 60/27Co has a decay constant of 4.14 x 10-9 s-1. How long will it take before only 1/3 of the original sample
    11·1 answer
  • A rocket takes off from Earth's surface, accelerating straight up at 47.2 m/s2. Calculate the normal force (in N) acting on an a
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!