Answer:
axial stress in bar B = 25Mpa.
Deformation of bar A = 0.4mm.
Explanation:
PS: Kindly check the attached picture for the diagram showing the two bars that is to say the bar A and the bar B.
So, we are given the following data or information or parameters which we are going to use in solving this particular question or problem. Here they are;
The cross-sectional areas of Bars A and B = 400 mm2, the modulus of elasticity of bar A and bar B = 200 GPa, applied force = 10kN.
STEP ONE: The first step is to determine or calculate the axial stress in bar B. Therefore,
Axial stress in bar B = 10 × 10³ ÷ 400 × 10⁻⁶ = 25 Mpa.
STEP TWO: The second step here is to determine or calculate the deformation of bar A. Therefore,
The deformation of bar A = 20 × 10³ ×1.5 ÷ 400 × 10⁻⁶ × 200 × 10³ = 0.375 mm.
Answer:
A) attached below
B) 743 KJ
C) 1.8983 KJ/K
Explanation:
A) Diagram of system schematic and set up states
attached below
<u>B) Calculate the amount of work received from the paddle wheel </u>
assuming ideal gas situation
v1 = v2 ( for a constant volume process )
work generated by paddle wheel = system internal energy
dw = mCv dT . where ; Cv = 0.743 KJ/kgk
= 5 * 0.743 * ( 500 - 300 )
= 3.715 * 200 = 743 KJ
<u>C) calculate the amount of entropy generated ( KJ/K )</u>
S2 - S1 = 1.8983 KJ/K
attached below is the detailed solution
Answer:
Hello your question is incomplete attached below is the complete question
answer:
Considering Laminar flow
Q ( heat ) will be independent of diameter
Considering Turbulent flow
The heat transfer will increase with decreasing "dia" for the turbulent
heat transfer = f(d^-0.8 )
Explanation:
attached below is the detailed solution
Considering Laminar flow
Q ( heat ) will be independent of diameter
Considering Turbulent flow
The heat transfer will increase with decreasing "dia" for the turbulent
heat transfer = f(d^-0.8 )
Answer:
Typically, diesel trucks cost more than those with gas engines, especially when you're first buying them, as diesel is usually featured as an add-on for gas-powered cars. Diesel add-ons can cost over $5,000 for midsize trucks and around $10,000 for heavy-duty trucks.
Explanation:
Make me brain pls