When Q is equal the initial concentration of the products / the initial concentration of the reactants.
so, Q = [Ag]*[Cl-] and we neglected [AgCl] as it is solid
∴ Q = 10^-6 * 10^-5
= 10^-11
now we will compare the value of Q with the value of Keq:
when Q = Keq so, the system is in equilibrium
and when Q > Keq so, the reaction will go forward (shift to right) to achieve equilibrium.
and when Q< Keq so, the reaction will go left (shift to left) to achieve equilibrium.
when Q = 10^-11 and Keq = 10^20
∴Q< Keq
and the reaction will shift to left.
The molecular formula of organic solvent is <em>C6H12</em>
<h2>calculation</h2><h3>find the empirical formula first as in step 1 and 2</h3>
Step 1: f<em>ind the moles of C and H</em>
- moles = % composition/molar mass
- from periodic table molar mass of C= 12 g/mol while that of H= 1 g/mol
- moles is C is therefore = 85.6/12= 7. 13 moles
- moles of H= 14.4/1 - 14.4 moles
Step 2: <em>calculate the mole fraction by dividing each mole by smallest number of mole(7.13)</em>
H= 14.4/7.13 =2
the empirical formula is therefore = CH2
<h2>Then calculate the molecular formula from empirical formula</h2>
step 3: divide the grams molar mass by empirical formula mass
empirical formula mass = 12+(1 x2) = 14 g/mol
= 84.2/ 14 = 6
step 4: multiply each of the subscript within the empirical formula with the value gotten in step 3
- that is [CH2]6 = C6H12 therefore the molecular formula = <u>C6H12</u>
Answer:
penicillin could protect mice against infection from deadly Streptococci.
Explanation:
Answer is: the average atomic mass 217.606 amu.
Ar₁= 203.973 amu; the average atomic mass of isotope.
Ar₂ = 205.9745 amu.
Ar₃ = 206.9745 amu.
Ar₄ = 207.9766 amu.
ω₁ = 1.40% = 0.014; mass percentage of isotope.
ω₂ = 24.10% = 0.241.
ω₃ = 22.10% = 0.221.
ω₄ = 57.40% = 0.574.
Ar = Ar₁ · ω₁+ Ar₂ · ω₂ + Ar₃ · ω₃ + Ar₄ · ω₄.
Ar = 203.973 amu · 0.014 + 205.9745 amu · 0.241 + 206.9745 amu · 0.221 + 207.9766 amu · 0.574.
Ar = 2.855 amu + 49.632 amu + 45.741 amu + 119.378 amu.
Ar = 217.606 amu.
But abundance of isotopes is greater than 100%.
It should be lead, with the fourth isotope weighs 207.9766 amu and an abundance of 52.40.
Answer:
410.196 J/[kg*°C].
Explanation:
1) the equation of the energy is: E=c*m*(t₂-t₁), where E - energy (523 J), c - unknown specific heat of copper, m - mass of this copper [kg], t₂ - the final temperature, t₁ - initial temerature;
2) the specific heat of copper is:
![c=\frac{E}{m*(t_2-t_1)}; \ => \ c=\frac{523}{0.085*(45-30)}=\frac{523}{1.275}=410.196[\frac{J}{kg*C}].](https://tex.z-dn.net/?f=c%3D%5Cfrac%7BE%7D%7Bm%2A%28t_2-t_1%29%7D%3B%20%5C%20%3D%3E%20%5C%20c%3D%5Cfrac%7B523%7D%7B0.085%2A%2845-30%29%7D%3D%5Cfrac%7B523%7D%7B1.275%7D%3D410.196%5B%5Cfrac%7BJ%7D%7Bkg%2AC%7D%5D.)