Answer: The factor that lead to cyclopropane being less stable than the other cycloalkanes is the presence of a RING STRAIN.
Explanation:
In organic chemistry, the end carbon atoms of an open aliphatic chain can join together to form a closed system or ring to form cycloalkanes. Such compounds are known as cyclic compounds. Examples include cyclopropane, cyclobutane, cyclopentane and many among others.
Cyclopropane is less stable than other cycloalkanes mentioned above because of the presence of ring strain in its structural arrangement. The ring strain is the spatial orientation of atoms of the cycloalkane compounds which tend to give off a very high and non favourable energy. The release of heat energy which is stored in the bonds and molecules cause the ring to be UNSTABLE and REACTIVE.
The presence of the ring strain affects mainly the structures and the conformational function of the smaller cycloalkanes. cyclopropane, which is the smallest cycloalkane than the rest mentioned above, contains only 3 carbons with a small ring.
Molar solubility<span> is the number of moles of a substance (the solute) that can be dissolved per liter of solution before the solution becomes saturated. We calculate as follows:
</span>3Cu2+ + 2(AsO4)3-<span> = Cu3(AsO4)2
</span>
7.6 x 10^-36 = (3x^3)(2x^2)
x = 6.62 x 10^-8 M
I don't know the answer to long I just want points so plz like and thank me jk the answer is 12H2o
The total charge on an atom comes from protons and electrons.
The proton is positively charged while the electron is negatively charged. A neutral atom would have an equal number of protons and electrons.
An atom with more protons than electrons will be positively charged while those with more electrons than protons will be negatively charged.
More on the atom can be found here: brainly.com/question/1641336
First, let's compute the number of moles in the system assuming ideal gas behavior.
PV = nRT
(663 mmHg)(1atm/760 mmHg)(60 L) = n(0.0821 L-atm/mol-K)(20+273 K)
Solving for n,
n = 2.176 moles
At standard conditions, the standard molar volume is 22.4 L/mol. Thus,
Standard volume = 22.4 L/mol * 2.176 mol =<em> 48.74 L</em>