Answer:
B
Step-by-step explanation:
All the other points seem to be present on the graph
Answer:
he shortest distance from the point E to a side of square ABCD is 0.293
Step-by-step explanation:
The question parameters are
Shape of figure ABCD = Square
Point E lies on the diagonal line AC
The length of the segment AE = 1
Therefore, we have;
Length of AC = √(AB² + CD²) = √(1² + 1²) = √2
Hence, the point E is closer to the point C and the closest distance to a side from E is the perpendicular from the point E to BC at point E' or to CD at poit E'' which is found as follows;
AC is a bisector of ∠DAB, hence;
∠DAC = 45° = ∠CAE'
EE' = EC × cos(45°)
EC = AC - AE = √2 - 1
Therefore;
EE' = (√2 - 1) × cos(45°) = (√2 - 1) × (√2)/2 = 1 - (√2)/2 = 0.293
Hence, the shortest distance from the point E to a side of square ABCD = 0.293.
425=25x-10x-250
675=15x
x=45
45 calculators were sold.
Answer:
0.891
Step-by-step explanation:
sin(63º) = 0.891006..... ≈ 0.89
Answer:

Step-by-step explanation:
From the question we are told that:
Mean 
Flaws 
Distance 
Generally the equation for Poisson mean lambda over 1000 is mathematically given by

Therefore


