Answer:0uigygut68 y o ro
Step-by-step explanation:
First of all we will understand the question!!
<em>The</em><em> </em><em>question</em><em> </em><em>is</em><em> </em><em>saying</em><em> </em><em>that</em><em> </em><em>you</em><em> </em><em>are</em><em> </em><em>given</em><em> </em><em>a</em><em> </em><em>function</em><em> </em><em>and</em><em> </em><em>you</em><em> </em><em>have</em><em> </em><em>to</em><em> </em><em>find</em><em> </em><em>the</em><em> </em><em>value</em><em> </em><em>of</em><em> </em><em>x</em><em> </em><em>which</em><em> </em><em>will</em><em> </em><em>give</em><em> </em><em>the</em><em> </em><em>maximum</em><em> </em><em>profit</em><em>.</em><em>.</em><em>.</em><em> </em><em>Lets</em><em> </em><em>solve</em><em> </em><em>it</em><em> </em><em>by</em><em> </em><em>finding</em><em> </em><em>the</em><em> </em><em>extrema</em><em> </em><em>using</em><em> </em><em>the</em><em> </em><em>vertex</em>
<em>
</em>
- <u>Identify the coefficients a and b of the quadratic function</u>
<em>
</em>
- <u>Since a<0, the function has the maximum value at x, calculated by substituting a and b into x=-b/2a</u>
<u>
</u>
- <u>Solve</u><u> </u><u>the</u><u> </u><u>equation</u><u> </u><u>for</u><u> </u><u>x</u><u> </u>
<u>
</u>
- <u>The maximum of the quadratic function is at </u><u>x</u><u>=</u><u>3</u>
Answer: don't know sorry
Step-by-step explanation:
Answer:
Step-by-step explanation:
Applying logarithm rule
Log A - Log B= Log(A/B). Division rule
Now, Logx-log(x+13)=1
Log(x/(x+13))=1
Assume that the log is a natural log whose base is 10.
Then apply logarithm law
Log10 base 10=1
Comparing this to Log(x/(x+13))=1
This implies that
x/(x+13)=10
x=10(x+13)
x=10x+130
x-10x=130
-9x=130
x=130/-9
x=-14.444
Answer:
Step-by-step explanation:
![CI=\left[\begin{array}{ccc}1&6&0\\0&1&2\\1&-1&3\end{array}\right] \left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right]](https://tex.z-dn.net/?f=CI%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%266%260%5C%5C0%261%262%5C%5C1%26-1%263%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%260%5C%5C0%261%260%5C%5C0%260%261%5Cend%7Barray%7D%5Cright%5D)
Subtract row 3 from row 1:
![\left[\begin{array}{ccc}1&6&0\\0&1&2\\0&7&-3\end{array}\right] \left[\begin{array}{ccc}1&0&0\\0&1&0\\1&0&-1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%266%260%5C%5C0%261%262%5C%5C0%267%26-3%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%260%5C%5C0%261%260%5C%5C1%260%26-1%5Cend%7Barray%7D%5Cright%5D)
Subtract row 3 from 7 times row 2:
![\left[\begin{array}{ccc}1&6&0\\0&1&2\\0&0&17\end{array}\right] \left[\begin{array}{ccc}1&0&0\\0&1&0\\-1&7&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%266%260%5C%5C0%261%262%5C%5C0%260%2617%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%260%5C%5C0%261%260%5C%5C-1%267%261%5Cend%7Barray%7D%5Cright%5D)
Divide row 3 by 17:
![\left[\begin{array}{ccc}1&6&0\\0&1&2\\0&0&1\end{array}\right] \left[\begin{array}{ccc}1&0&0\\0&1&0\\\frac{-1}{17} &\frac{7}{17} &\frac{1}{17} \end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%266%260%5C%5C0%261%262%5C%5C0%260%261%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%260%5C%5C0%261%260%5C%5C%5Cfrac%7B-1%7D%7B17%7D%20%26%5Cfrac%7B7%7D%7B17%7D%20%26%5Cfrac%7B1%7D%7B17%7D%20%5Cend%7Barray%7D%5Cright%5D)
Subtract 2 of row 3 from row 2:
![\left[\begin{array}{ccc}1&6&0\\0&1&0\\0&0&1\end{array}\right] \left[\begin{array}{ccc}1&0&0\\\frac{2}{17} &\frac{3}{17} &\frac{-2}{17} \\\frac{-1}{17} &\frac{7}{17} &\frac{1}{17} \end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%266%260%5C%5C0%261%260%5C%5C0%260%261%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%260%5C%5C%5Cfrac%7B2%7D%7B17%7D%20%26%5Cfrac%7B3%7D%7B17%7D%20%26%5Cfrac%7B-2%7D%7B17%7D%20%5C%5C%5Cfrac%7B-1%7D%7B17%7D%20%26%5Cfrac%7B7%7D%7B17%7D%20%26%5Cfrac%7B1%7D%7B17%7D%20%5Cend%7Barray%7D%5Cright%5D)
Subtract 6 of row 2 from row 1:
![\left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right] \left[\begin{array}{ccc}\frac{5}{17}&\frac{-18}{17}&\frac{12}{17}\\\frac{2}{17} &\frac{3}{17} &\frac{-2}{17} \\\frac{-1}{17} &\frac{7}{17} &\frac{1}{17} \end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%260%5C%5C0%261%260%5C%5C0%260%261%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B5%7D%7B17%7D%26%5Cfrac%7B-18%7D%7B17%7D%26%5Cfrac%7B12%7D%7B17%7D%5C%5C%5Cfrac%7B2%7D%7B17%7D%20%26%5Cfrac%7B3%7D%7B17%7D%20%26%5Cfrac%7B-2%7D%7B17%7D%20%5C%5C%5Cfrac%7B-1%7D%7B17%7D%20%26%5Cfrac%7B7%7D%7B17%7D%20%26%5Cfrac%7B1%7D%7B17%7D%20%5Cend%7Barray%7D%5Cright%5D)
![C^{-1}=\frac{1}{17} \left[\begin{array}{ccc}5&-18&12\\2&3&-2\\-1&7&1\end{array}\right]](https://tex.z-dn.net/?f=C%5E%7B-1%7D%3D%5Cfrac%7B1%7D%7B17%7D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%26-18%2612%5C%5C2%263%26-2%5C%5C-1%267%261%5Cend%7Barray%7D%5Cright%5D)
![C^{-1}b=\frac{1}{17} \left[\begin{array}{ccc}5&-18&12\\2&3&-2\\-1&7&1\end{array}\right]\left[\begin{array}{c}10&1&3\end{array}\right]=\left[\begin{array}{c}4&1&0\end{array}\right]](https://tex.z-dn.net/?f=C%5E%7B-1%7Db%3D%5Cfrac%7B1%7D%7B17%7D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%26-18%2612%5C%5C2%263%26-2%5C%5C-1%267%261%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D10%261%263%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D4%261%260%5Cend%7Barray%7D%5Cright%5D)