Answer:
5.7082,5.009,5.09,5.7
Step-by-step explanation:
Answer:
g(x)=x+6
Step-by-step explanation:
we have
f(x)=x+8
If f(x) is shifted 2 units to the right
then
The rule of the translation is
g(x)=f(x-2)
so
g(x)=(x-2)+8
g(x)=x+6
Answer:
The answer is "
"
Step-by-step explanation:
Given:

Find critical points:

differentiate the value with respect of x:
critical points
![\to (x-e)^2 e^{(e-x)} [e+3-x]=0\\\\\to e^{(e-x)}\neq 0 \\\\\to (x-e)^2=0\\\\ \to [e+3-x]=0\\\\\to x=e\\\\\to x=e+3\\\\\to x= e,e+3](https://tex.z-dn.net/?f=%5Cto%20%28x-e%29%5E2%20e%5E%7B%28e-x%29%7D%20%5Be%2B3-x%5D%3D0%5C%5C%5C%5C%5Cto%20e%5E%7B%28e-x%29%7D%5Cneq%200%20%5C%5C%5C%5C%5Cto%20%28x-e%29%5E2%3D0%5C%5C%5C%5C%20%5Cto%20%5Be%2B3-x%5D%3D0%5C%5C%5C%5C%5Cto%20x%3De%5C%5C%5C%5C%5Cto%20x%3De%2B3%5C%5C%5C%5C%5Cto%20x%3D%20e%2Ce%2B3)
So,
The critical points of 
Answer:
Step-by-step explanation:
given that we are interested in finding out the proportion of adults in the United State who cannot cover a $400 unexpected expense without borrowing money or going into debt.
Sample size = 765
Favour = 322
a) The population is the adults in the United State who cannot cover a $400 unexpected expense without borrowing money or going into debt
b) The parameter being estimated is the population proportion P of adults in the United State who cannot cover a $400 unexpected expense without borrowing money or going into debt.
c) point estimate for proportion = sample proporiton = 
d) We can use test statistic here as for proportions we have population std deviation known.
d) Std error = 0.01785(
Test statistic Z = p difference / std error
f) when estimated p is 0.50 we get Z = -4.43
g) Is true population value was 40% then
Z = 1.17 (because proportion difference changes here)
Answer:
The percent of error in the measurement is 2%
Step-by-step explanation:
The percent of error associated with a reported measurement is calculate using the formula;

The error associated with a measurement is defined as half of the smallest unit of measurement used. The measurement reported was 2.5. The smallest unit of measurement for this reading is 0.1. The error is thus;
error = 0.1/2 = 0.05
The percent of error is thus;
