The answer is C. Supplementary.
Answer:
1/4 or 25%
Step-by-step explanation:
The probability for rolling an odd number is 50% or
because there are 3 odd numbers, (1, 3, 5) and 6 total outcomes (1, 2, 3, 4, 5, 6). ![\frac{3}{6} =\frac{1}{2}](https://tex.z-dn.net/?f=%5Cfrac%7B3%7D%7B6%7D%20%3D%5Cfrac%7B1%7D%7B2%7D)
The probability for rolling two odd numbers in a row is
![\frac{1}{2} *\frac{1}{2} =\frac{1}{4}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%20%2A%5Cfrac%7B1%7D%7B2%7D%20%3D%5Cfrac%7B1%7D%7B4%7D)
So, the probability of rolling an odd number twice is 25% or
.
Answer:
A ratio
Step-by-step explanation:
A quantitative relation between two amounts showing the number of times one value contains or is contained within the other
Answer:
its A
Step-by-step explanation:
You have a single sequence of integers
such that
![\dfrac{a_2}{2!} + \dfrac{a_3}{3!} + \dfrac{a_4}{4!} + \dfrac{a_5}{5!} + \dfrac{a_6}{6!} + \dfrac{a_7}{7!}=\dfrac{5}{7},](https://tex.z-dn.net/?f=%5Cdfrac%7Ba_2%7D%7B2%21%7D%20%2B%20%5Cdfrac%7Ba_3%7D%7B3%21%7D%20%2B%20%5Cdfrac%7Ba_4%7D%7B4%21%7D%20%2B%20%5Cdfrac%7Ba_5%7D%7B5%21%7D%20%2B%20%5Cdfrac%7Ba_6%7D%7B6%21%7D%20%2B%20%5Cdfrac%7Ba_7%7D%7B7%21%7D%3D%5Cdfrac%7B5%7D%7B7%7D%2C)
where
for ![i = 2, 3, \dots, 7.](https://tex.z-dn.net/?f=i%20%3D%202%2C%203%2C%20%5Cdots%2C%207.)
1. Multiply by 7! to get
![\dfrac{7!a_2}{2!} + \dfrac{7!a_3}{3!} + \dfrac{7!a_4}{4!} + \dfrac{7!a_5}{5!} + \dfrac{7!a_6}{6!} + \dfrac{7!a_7}{7!}=\dfrac{7!\cdot 5}{7},\\ \\7\cdot 6\cdot 5\cdot 4\cdot 3\cdoa a_2+7\cdot 6\cdot 5\cdot 4\cdot a_3+7\cdot 6\cdot 5\cdot a_4+7\cdot 6\cdot a_5+7\cdot a_6+a_7=6!\cdot 5,\\ \\7(6\cdot 5\cdot 4\cdot 3\cdoa a_2+6\cdot 5\cdot 4\cdot a_3+6\cdot 5\cdot a_4+6\cdot a_5+a_6)+a_7=3600.](https://tex.z-dn.net/?f=%5Cdfrac%7B7%21a_2%7D%7B2%21%7D%20%2B%20%5Cdfrac%7B7%21a_3%7D%7B3%21%7D%20%2B%20%5Cdfrac%7B7%21a_4%7D%7B4%21%7D%20%2B%20%5Cdfrac%7B7%21a_5%7D%7B5%21%7D%20%2B%20%5Cdfrac%7B7%21a_6%7D%7B6%21%7D%20%2B%20%5Cdfrac%7B7%21a_7%7D%7B7%21%7D%3D%5Cdfrac%7B7%21%5Ccdot%205%7D%7B7%7D%2C%5C%5C%20%5C%5C7%5Ccdot%206%5Ccdot%205%5Ccdot%204%5Ccdot%203%5Ccdoa%20a_2%2B7%5Ccdot%206%5Ccdot%205%5Ccdot%204%5Ccdot%20a_3%2B7%5Ccdot%206%5Ccdot%205%5Ccdot%20a_4%2B7%5Ccdot%206%5Ccdot%20a_5%2B7%5Ccdot%20a_6%2Ba_7%3D6%21%5Ccdot%205%2C%5C%5C%20%5C%5C7%286%5Ccdot%205%5Ccdot%204%5Ccdot%203%5Ccdoa%20a_2%2B6%5Ccdot%205%5Ccdot%204%5Ccdot%20a_3%2B6%5Ccdot%205%5Ccdot%20a_4%2B6%5Ccdot%20a_5%2Ba_6%29%2Ba_7%3D3600.)
By Wilson's theorem,
![a_7+7\cdot (6\cdot 5\cdot 4\cdot 3\cdoa a_2+6\cdot 5\cdot 4\cdot a_3+6\cdot 5\cdot a_4+6\cdot a_5+a_6)\equiv 2(\mod 7)\Rightarrow a_7=2.](https://tex.z-dn.net/?f=a_7%2B7%5Ccdot%20%286%5Ccdot%205%5Ccdot%204%5Ccdot%203%5Ccdoa%20a_2%2B6%5Ccdot%205%5Ccdot%204%5Ccdot%20a_3%2B6%5Ccdot%205%5Ccdot%20a_4%2B6%5Ccdot%20a_5%2Ba_6%29%5Cequiv%202%28%5Cmod%207%29%5CRightarrow%20a_7%3D2.)
2. Then write
to the left and divide through by 7 to obtain
![6\cdot 5\cdot 4\cdot 3\cdoa a_2+6\cdot 5\cdot 4\cdot a_3+6\cdot 5\cdot a_4+6\cdot a_5+a_6=\dfrac{3600-2}{7}=514.](https://tex.z-dn.net/?f=6%5Ccdot%205%5Ccdot%204%5Ccdot%203%5Ccdoa%20a_2%2B6%5Ccdot%205%5Ccdot%204%5Ccdot%20a_3%2B6%5Ccdot%205%5Ccdot%20a_4%2B6%5Ccdot%20a_5%2Ba_6%3D%5Cdfrac%7B3600-2%7D%7B7%7D%3D514.)
Repeat this procedure by ![\mod 6:](https://tex.z-dn.net/?f=%5Cmod%206%3A)
![a_6+6(5\cdot 4\cdot 3\cdoa a_2+ 5\cdot 4\cdot a_3+5\cdot a_4+a_5)\equiv 4(\mod 6)\Rightarrow a_6=4.](https://tex.z-dn.net/?f=a_6%2B6%285%5Ccdot%204%5Ccdot%203%5Ccdoa%20a_2%2B%205%5Ccdot%204%5Ccdot%20a_3%2B5%5Ccdot%20a_4%2Ba_5%29%5Cequiv%204%28%5Cmod%206%29%5CRightarrow%20a_6%3D4.)
And so on:
![5\cdot 4\cdot 3\cdoa a_2+ 5\cdot 4\cdot a_3+5\cdot a_4+a_5=\dfrac{514-4}{6}=85,\\ \\a_5+5(4\cdot 3\cdoa a_2+ 4\cdot a_3+a_4)\equiv 0(\mod 5)\Rightarrow a_5=0,\\ \\4\cdot 3\cdoa a_2+ 4\cdot a_3+a_4=\dfrac{85-0}{5}=17,\\ \\a_4+4(3\cdoa a_2+ a_3)\equiv 1(\mod 4)\Rightarrow a_4=1,\\ \\3\cdoa a_2+ a_3=\dfrac{17-1}{4}=4,\\ \\a_3+3\cdot a_2\equiv 1(\mod 3)\Rightarrow a_3=1,\\ \\a_2=\dfrac{4-1}{3}=1.](https://tex.z-dn.net/?f=5%5Ccdot%204%5Ccdot%203%5Ccdoa%20a_2%2B%205%5Ccdot%204%5Ccdot%20a_3%2B5%5Ccdot%20a_4%2Ba_5%3D%5Cdfrac%7B514-4%7D%7B6%7D%3D85%2C%5C%5C%20%5C%5Ca_5%2B5%284%5Ccdot%203%5Ccdoa%20a_2%2B%204%5Ccdot%20a_3%2Ba_4%29%5Cequiv%200%28%5Cmod%205%29%5CRightarrow%20a_5%3D0%2C%5C%5C%20%5C%5C4%5Ccdot%203%5Ccdoa%20a_2%2B%204%5Ccdot%20a_3%2Ba_4%3D%5Cdfrac%7B85-0%7D%7B5%7D%3D17%2C%5C%5C%20%5C%5Ca_4%2B4%283%5Ccdoa%20a_2%2B%20a_3%29%5Cequiv%201%28%5Cmod%204%29%5CRightarrow%20a_4%3D1%2C%5C%5C%20%5C%5C3%5Ccdoa%20a_2%2B%20a_3%3D%5Cdfrac%7B17-1%7D%7B4%7D%3D4%2C%5C%5C%20%5C%5Ca_3%2B3%5Ccdot%20a_2%5Cequiv%201%28%5Cmod%203%29%5CRightarrow%20a_3%3D1%2C%5C%5C%20%5C%5Ca_2%3D%5Cdfrac%7B4-1%7D%7B3%7D%3D1.)
Answer: ![a_2=1,\ a_3=1,\ a_4=1,\ a_5=0,\ a_6=4,\ a_7=2.](https://tex.z-dn.net/?f=a_2%3D1%2C%5C%20a_3%3D1%2C%5C%20a_4%3D1%2C%5C%20a_5%3D0%2C%5C%20a_6%3D4%2C%5C%20a_7%3D2.)