Newton's first law of motion states that an object at rest will remain at rest unless an unbalanced force acts on it. If you apply balanced forces on the object there would be no net force. The body does not accelerate but instead stays at rest.
Another way to look at this problem is to use Newton's second law of motion. The first law states that
, where
is the acceleration
is the net force and
is the mass of the object.
When F is zero, the acceleration of the object is zero. This means that if the object had a velocity of zero before the balanced forces started acting, the velocity will stay at zero after the balanced forces begin to act. If the object was moving at a constant velocity before the balanced forces started acting on it, it would continue at that constant velocity after the balanced forces begin to act.
Answer:
(chemical) is that what you where asking
Explanation:
can i have a brainlist
Answer:
The two types of collisions are :
Type a)
<u>Elastic collision</u>
Type b)
<u>Inelastic collision</u>
Explanation:
Collision : It is the event when two bodies collide with each other for small period of time.
During collision , the bodies exert force to each other.
Example :
When boxer hits with punches .
When bat hits the ball in cricket match.
So, collision is short duration interaction of two objects. When the objects collides , there is change in their velocity.
All collision follow law of conservation of momentum . Their type is decided by , whether they follow conservation of energy also.
<u>Compare and contrast the two types</u>
a) Elastic collision : Those collision in which no loss or gain of kinetic energy will occur. They follow conservation of kinetic energy. Example : ideal gaseous molecule
b) Inelastic collision : Those collision in which Change in kinetic energy will occur. They do not follow conservation of kinetic energy.Almost all conservation are inelastic.
Here Kinetic energy get converted into other form of energy.
Answer:
There are 10.0 moles of beryllium oxide in a 250 grams sample of the compound.
Explanation:
We can calculate the number of moles (η) of BeO as follows:

Where:
m: is the mass = 250 g
M: is the molar mass = 25.0116 g/mol
Hence, the number of moles is:

Therefore, there are 10.0 moles of beryllium oxide in a 250 grams sample of the compound.
I hope it helps you!
Answer:
can you provide more to the question
Explanation: