1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
natulia [17]
3 years ago
15

Air, water and salt solution are given in the table.

Physics
1 answer:
Oxana [17]3 years ago
7 0

Answer:

I need help

Explanation:

Albert tries to move a 200 N car and it moves 0 m. A tow truck tries to move the 200 N car and it moves 2 m off the ground onto the truck bed. Who put more work into moving the car? Explain your response using the space below. Be sure to show your calculations. *

You might be interested in
How is resonance used in musical instruments?
9966 [12]

Answer:

The answer is B: to Amplify the sound

7 0
3 years ago
Read 2 more answers
What could be the possible answer to the question ?<br><br>thankyou ~​
Ganezh [65]

The value of the force, F₀, at equilibrium is equal to the horizontal

component of the tension in string 2.

Response:

  • The value of F₀ so that string 1 remains vertical is approximately <u>0.377·M·g</u>

<h3>How can the equilibrium of forces be used to find the value of F₀?</h3>

Given:

The weight of the rod = The sum of the vertical forces in the strings

Therefore;

M·g = T₂·cos(37°) + T₁

The weight of the rod is at the middle.

Taking moment about point (2) gives;

M·g × L = T₁ × 2·L

Therefore;

T_1 = \mathbf{\dfrac{M \cdot g}{2}}

Which gives;

M \cdot g = \mathbf{T_2 \cdot cos(37 ^{\circ})+ \dfrac{M \cdot g}{2}}

T_2 = \dfrac{M \cdot g - \dfrac{M \cdot g}{2}}{cos(37 ^{\circ})}  = \mathbf{\dfrac{M \cdot g}{2 \cdot cos(37 ^{\circ})}}}

F₀ = T₂·sin(37°)

Which gives;

F_0 = \dfrac{M \cdot g \cdot sin(37 ^{\circ})}{2 \cdot cos(37 ^{\circ})}} = \dfrac{M \cdot g \cdot tan(37 ^{\circ})}{2}  \approx  \mathbf{0.377  \cdot M \cdot g}

  • F₀ ≈ <u>0.377·M·g</u>

<u />

Learn more about equilibrium of forces here:

brainly.com/question/6995192

3 0
2 years ago
Read 2 more answers
Certain insects can achieve seemingly impossible accelerations while jumping. the click beetle accelerates at an astonishing 400
hichkok12 [17]

(a) The launching velocity of the beetle is 6.4 m/s

(b) The time taken to achieve the speed for launch is 1.63 ms

(c) The beetle reaches a height of 2.1 m.

(a) The beetle starts from rest and accelerates with an upward acceleration of 400 g and reaches its launching speed in a distance 0.53 cm. Here g is the acceleration due to gravity.

Use the equation of motion,

v^2=u^2+2as

Here, the initial velocity of the beetle is u, its final velocity is v, the acceleration of the beetle is a, and the beetle accelerates over a distance s.

Substitute 0 m/s for u, 400 g for a, 9.8 m/s² for g and 0.52×10⁻²m for s.

v^2=u^2+2as\\ = (0 m/s)^2+2 (400)(9.8 m/s^2)(0.52*10^-^2 m)\\ =40.768 (m/s)^2\\ v=6.385 m/s

The launching speed of the beetle is <u>6.4 m/s</u>.

(b) To determine the time t taken by the beetle for launching itself upwards is determined by using the equation of motion,

v=u+at

Substitute 0 m/s for u, 400 g for a, 9.8 m/s² for g and 6.385 m/s for v.

v=u+at\\ 6.385 m/s = (0 m/s) +400(9.8 m/s^2)t\\ t = \frac{6.385 m/s}{3920 m/s^2} = 1.63*10^-^3s=1.63 ms

The time taken by the beetle to launch itself upwards is <u>1.62 ms</u>.

(c) After the beetle launches itself upwards, it is acted upon by the earth's gravitational force, which pulls it downwards towards the earth with an acceleration equal to the acceleration due to gravity g. Its velocity reduces and when it reaches the maximum height in its path upwards, its final velocity becomes equal to zero.

Use the equation of motion,

v^2=u^2+2as

Substitute 6.385 m/s for u, -9.8 m/s² for g and 0 m/s for v.

v^2=u^2+2as\\ (0m/s)^2=(6.385 m/s)^2+2(-9.8m/s^2)s\\ s=\frac{(6.385 m/s)^2}{2(9.8m/s^2)} =2.08 m

The beetle can jump to a height of <u>2.1 m</u>



7 0
3 years ago
collision occurs betweena 2 kg particle traveling with velocity and a 4 kg particle traveling with velocity. what is the magnitu
anzhelika [568]

Answer:

metre per seconds

Explanation:

because velocity = distance ÷ time

4 0
3 years ago
Mrs. Paul and Dr. Mykannen ride a tandem bike on the beach. They ride along the beach for about 455 meters. Their final velocity
algol [13]

Answer:

Time = 80.91 seconds

Explanation:

Given the following data;

Velocity = 5.50 m/s.

Distance = 445 meters

To find the time;

Velocity can be defined as the rate of change in displacement (distance) with time. Velocity is a vector quantity and as such it has both magnitude and direction.

Mathematically, velocity is given by the equation;

Velocity = \frac{distance}{time}

Substituting into the formula, we have;

5.5 = 445/time

Time = 445/5.5

Time = 80.91 seconds

5 0
2 years ago
Other questions:
  • If EMS waves are transverse, what conclusion can you make concerning the distances they can travel?
    5·1 answer
  • An internal combustion engine uses fuel, of energy content 44.4 MJ/kg, at a rate of 5 kg/h. If the efficiency is 28%, determine
    11·1 answer
  • When the chemical name of a compound is being written, the subscripts will determine the symbols. elements. prefixes. suffixes.W
    13·2 answers
  • Why is it important that an astronomer studies physics?
    11·2 answers
  • Mr. Wang works in a recycling center. Recyclable materials arrive at the
    7·1 answer
  • A high school physics student with a mass of 68.18 KG is sitting in a seat reading this question the magnitude of the force with
    7·1 answer
  • Which is an example of a chemical change?
    8·1 answer
  • What is fundamental unit?​
    8·1 answer
  • Is the intensity of light directly or inversely proportional to the concentration according to Beer-lambert's law?
    12·1 answer
  • What is the change in internal energy (in J) of a system that releases 675 J of thermal energy to its surroundings and has 525 c
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!