Explanation:
Period of a mass on a spring is:
T = 2π√(m/k)
T is directly proportional with the square root of m. So as the mass increases, the period increases.
Answer:
Terminal speed, v = 6901.07 m/s
Explanation:
It is given that,
Mass of the horizontal bar, m = 30 g = 0.03 kg
Length of the bar, l = 13 cm = 0.13 m
Magnetic field, 
Resistance, R = 1.2 ohms
We need to find the terminal speed oat which the bar falls. When terminal speed is reached,
Force of gravity = magnetic force
..................(1)
i is the current flowing
l is the length of the rod
Due to the motion in rods, an emf is induced in the coil which is given by :
, v is the speed of the bar


Equation (1) becomes,



v = 6901.07 m/s
So, the terminal speed at which the bar falls is 6901.07 m/s. Hence, this is the required solution.
Answer:
The current increases when the circuit is closed.
Explanation:
As the complete question is not given, the complete question is attached herewith.
From the data the resistors are connected in parallel and the value of Battery EMF is increased thus as the resistance is decreased and the EMF of the battery is increased, thus the current will increase when the switch is closed.
Answer:
a) The flea's speed when it leaves the ground is 
b) The flea move
upward while it is pushing off
Explanation:
Hi
<u>Knwons</u>
Mass
, Work
and Force 
a) Here we are going to use
, so 
a) Here we are going to use
, so
or
approx.