Answer:
1.) Frequency F = 890.9 Hz
2.) Wavelength (λ) = 0.893 m
Explanation:
1.) Given that the wavelength = 0.385m
The speed of sound = 343 m / s
To predict the frequency, let us use the formula V = F λ
Where (λ) = wavelength = 0.385m
343 = F × 0.385
F = 343/0.385
F = 890.9 Hz
2.) Given that the frequency = 384Hz
Using the formula again
V = F λ
λ = V/F
Wavelength (λ) = 343/384
Wavelength (λ) = 0.893 m
The two questions can be solved with the use of formula
Answer:

Explanation:
Given that,
The distance between two spheres, r = 25 cm = 0.25 m
The capacitance, C = 26 pF = 26×10⁻¹² F
Charge, Q = 12 nC = 12 × 10⁻⁹ C
We need to find the work done in moving the charge. We know that, work done is given by :

Put all the values,

So, the work done is
.
<h2><u>Projectile</u><u> </u><u>motion</u><u>:</u></h2>
<em>If</em><em> </em><em>an</em><em> </em><em>object is given an initial velocity</em><em> </em><em>in any direction and then allowed</em><em> </em><em>to travel freely under gravity</em><em>, </em><em>it</em><em> </em><em>is</em><em> </em><em>called a projectile motion</em><em>. </em>
It is basically 3 types.
- horizontally projectile motion
- oblique projectile motion
- included plane projectile motion
A “real” image occurs when light rays actually intersect at the image, and become inverted, or turned upside down. ... In flat, or plane mirrors, the image is a virtual image, and is the same distance behind the mirror as the object is in front of the mirror. The image is also the same size as the object.