Answer:
1. 24375 N/C
2. 2925 V
Explanation:
d = 12 cm = 0.12 m
F = 3.9 x 10^-15 N
q = 1.6 x 10^-19 C
1. The relation between the electric field and the charge is given by
F = q E
So, 

E = 24375 N/C
2. The potential difference and the electric field is related by the given relation.
V = E x d
where, V be the potential difference, E be the electric field strength and d be the distance between the electrodes.
By substituting the values, we get
V = 24375 x 0.12 = 2925 Volt
Answer:
Coefficient of static friction will be equal to 0.642
Explanation:
We have given acceleration 
Acceleration due to gravity 
We have to find the coefficient of static friction between truck and a cabinet will
We know that acceleration is equal to
, here
is coefficient of static friction and g is acceleration due to gravity
So 
So coefficient of static friction will be equal to 0.642
Answer: (Sorry, but I don't know how to calculate mass)
1. 15 N
2. 0.4921
(feet per second squared)
4. 150 N
5. 8.202 feet per second squared
Answer:
35 kg
Explanation:
From the question,
Momentum (I) = mass (m) × velocity (v)
I = m×v................... Equation 1
Where m = mass, v = velocity
make m the subject of the equation
m = I/v.................... Equation 2
Given: I = 140 kgm/s, v = 4 m/s
Substitute these values into equation 2
m = 140/4
m = 35 kg
Hence the mass of the dart is 35 kg
To solve this problem we will apply the concept of magnification, which is given as the relationship between the focal length of the eyepieces and the focal length of the objective. This relationship can be expressed mathematically as,

Here,
= Magnification
= Focal length eyepieces
= Focal length of the Objective
Rearranging to find the focal length of the objective

Replacing with our values


Therefore the focal length of th eobjective lenses is 27.75cm