Answer:
Acid + Oxide or Hydroxide
Many oxide, hydroxide and carbonate compounds
are insoluble in water, but do react with acid.
Acid + Oxide → Salt + Water
Acid + Hydroxide → Salt + Water
MgO (s) + HNO3 (aq) → Mg(NO3)2 (aq) + H2O (l)
CuOH (s) + HCl (aq) → CuCl (aq) + H2O (l)
Explanation:
lead compounds are the oxides: lead monoxide, PbO, in which lead is in the +2 state; lead dioxide, PbO2, in which lead is in the +4 state; and trilead tetroxide, Pb3O4. Lead monoxide exists in two modifications, litharge and massicot. Litharge, or alpha lead monoxide, is a red or reddish…
Answer:
a) the final kilocalories per gram for food will be less because the mass was reduced
b)the final kilocalories per gram for food will be less since
c) the final kilocalories per gram for food will be less since the reaction will eventually go to completion
d) the final kilocalories per gram for food will be more.
Explanation:
a) the final kilocalories per gram for food will be less because the mass was reduced from 110.3 to 101.3g
b)the final kilocalories per gram for food will be less since some marshmallow fell off before the reaction
c) the final kilocalories per gram for food will be less since the reaction will eventually go to completion
d) the final kilocalories per gram for food will be more since the thermometer that got stuck will add to the value of final kilocalories per gram
Answer:
Partial pressure N₂ . (Partial pressure H₂O)² / (Partial pressure H₂)² . (Partial pressure NO)² = Kp
Explanation:
The reaction is:
2NO + 2H₂ → N₂ + 2H₂O
The expression for Kp (pressure equilibrium constant) would be:
Partial pressure N₂ . (Partial pressure H₂O)² / (Partial pressure H₂)² . (Partial pressure NO)²
There is another expression for Kp, where you work with Kc (equilibrium constant)
Kp = Kc (R.T)^Δn
where R is the Ideal Gases constant
T° is absolute temperature
Δn = moles of gases formed - moles of gases, I had initially
The standard enthalpy of formation for chlorine is zero but the standard entropy is larger than 0 because it is the elemental state of chlorine.
The standard enthalpy of formation for chlorine is zero because cl2 is the elemental state of chlorine and it does not require any energy for the formation of the standard state of chlorine.
The entropy of any system cannot be negative. It can only be positive or zero.
The entropy of a system will become zero only at a absolute zero temperature.
That's why the entropy of chlorine in elemental state is more than zero because absolutely zero temperature can't be obtained.
To know more about entropy, visit,
brainly.com/question/6364271
#SPJ4