Answer:
%H = 6.72 %
Explanation:
Percent composition of an element is the total mass of that element divided by the molecular mass of compound (or molecular mass) of which it is present in.
So,
Percent composition of Hydrogen will be given as,
%H = Total mass of H / Molecular Mass of Acetic Acid × 100
So,
Total Mass of H = 1.01 × 4 = 4.04 g
Molecular Mass of Acetic acid = 60.052 g/mol
Putting values in above formula,
%H = 4.04 g/mol ÷ 60.052 g/mol × 100
%H = 6.72 %
Magnesium. You can count the electrons in each level and because the number of electrons is the same with protons you have the atomic number based of which you can get the element in the periodic table
Answer:
6.022×10²² molecules
Explanation:
Given data:
Volume of nitrogen = 224 L
Pressure = standard = 1 atm
Temperature = standard = 273 K
Number of molecules = ?
Solution:
PV = nRT
1 atm × 224 L = n × 0.0821 atm.L/mol.K × 273 K
224 atm.L = n ×22.41 atm.L/mol
n = 224 atm.L/22.41 atm.L/mol
n = 10 mol
1 mole contain 6.022×10²³ molecules
10 mol×6.022×10²³ molecules/ 1 mol
60.22×10²³ molecules
6.022×10²² molecules
Answer:- C. 16.4 L
Solution:- The given balanced equation is:

From this equation, there is 2:1 mol ratio between HCl and hydrogen gas. First of all we calculate the moles of hydrogen gas from given grams of HCl using stoichiometry and then the volume of hydrogen gas could be calculated using ideal gas law equation, PV = nRT.
Molar mass of HCl = 1.008 + 35.45 = 36.458 gram per mol
The calculations are shown below:

= 
Now we will use ideal gas equation to calculate the volume.
n = 0.672 mol
T = 25 + 273 = 298 K
P = 101.3 kPa = 1 atm
R = 
PV = nRT
1(V) = (0.672)(0.0821)(298)
V = 16.4 L
From calculations, 16.4 L of hydrogen gas are formed and so the correct choice is C.
I think the answer is covalent bonds.