hydrogen-like ion is an ion containing only one electron. The energy of the electron in a hydrogen-like ion is given by:
En = −(2.18 × 10^−18J) Z^2 ( 1/n^2 )
where n is the principal quantum number and Z is the atomic number of the element. Plasma is a state of matter consisting of positive gaseous ions and electrons. In the plasma state, a mercury atom could be stripped of its 80 electrons and therefore could exist as Hg80+. Use the equation above to calculate the energy required for the last ionization step.hydrogen-like ion is an ion containing only one electron. The energy of the electron in a hydrogen-like ion is given by:
En = −(2.18 × 10^−18J) Z^2 ( 1/n^2 )
where n is the principal quantum number and Z is the atomic number of the element. Plasma is a state of matter consisting of positive gaseous ions and electrons. In the plasma state, a mercury atom could be stripped of its 80 electrons and therefore could exist as Hg80+. Use the equation above to calculate the energy required for the last ionization step.hydrogen-like ion is an ion containing only one electron. The energy of the electron in a hydrogen-like ion is given by:
En = −(2.18 × 10^−18J) Z^2 ( 1/n^2 )
where n is the principal quantum number and Z is the atomic number of the element. Plasma is a state of matter consisting of positive gaseous ions and electrons. In the plasma state, a mercury atom could be stripped of its 80 electrons and therefore could exist as Hg80+. Use the equation above to calculate the energy required for the last ionization step.
<em><u>pl</u></em><em><u>ease</u></em><em><u> mark</u></em><em><u> me</u></em><em><u> as</u></em><em><u> brainliest</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>
<em><u>f</u></em><em><u>ollow</u></em><em><u> me</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>
Answer:
The answer to your question is 0.62 atm = 62.82 kPa = 471.2 mmHg
Explanation:
Data
P = 0.62 atm
P = ? kPa
P = ? mmHg
Process
1.- Look for the conversion factor of atm to kPa and mmHg
1 atm = 101.325 kPa
1 atm = 760 mmHg
2.- Do the conversions
1 atm ----------------- 101.325 kPa
0.62 atm ------------ x
x = (0,62 x 101.325) / 1
x = 62.82 kPa
1 atm ------------------ 760 mmHg
0.62 atm ------------ x
x = (0.62 x 760)/1
x = 471.2 mmHg
If there is no net force on an object, then the object will <span>maintain it's rate of speed. Basically, net force is the change in an object's motion. If it is stationary and not moving, the object will stay stationary. If the object is moving at a rate of 2 miles per hour, it will constantly continue to move 2 mph because there is no net force.</span>
Answer:
Step-by-step explanation: We are asked to find the distance covered by a man in 15 minutes at a speed of 16 km/hr. 15 minutes = 15/60 hour. Therefore, the person can run 4 km in 15 minutes.
Explanation: