<u>Given:</u>
Initial temperature, T1 = 20 C
Final temperature, T2 = 40 C
<u>To determine:</u>
The temperature change
<u>Explanation:</u>
Convert degree C to Kelvin
Temperature in Kelvin = degree C + 273
T1 = 20 + 273 = 293 K
T2 = 40 + 273 = 313 K
Incremental temperature change = T2 - T1 = 313-293 = 20 K
Ans: The temperature change in kelvin is 20 K
I don't think so. "It's not a matter of pigment discrimination: Red and yellow bell peppers are essentially just green peppers that have been allowed to ripen"
Answer:
Molecular compounds consist of two or more nonmetals. The nonmetals that make up a molecular compound are held together by covalent/molecular bonds. Covalent bonds is known as the "sharing" of valence electrons between two or more chemical species. Valence electrons are shared so that the atoms of the compound can become stable, much like how ionic bonds transfer valence electrons between atoms to achieve stability.
Answer:
The reaction would shift toward the reactants
When the reaction reach equilibrium the partial pressure of NH3 will be greater than 1atm
Explanation:
For the reaction:
2NH₃(g) ⇄ N₂(g) + 3H₂(g)
Where K is defined as:

As initial pressures of all 3 gases is 1.0atm, reaction quotient, Q, is:

As Q > K, <em>the reaction will produce more NH₃ until Q = K consuming N₂ and H₂.</em>
Thus, there are true:
<h3>The reaction would shift toward the reactants</h3><h3>When the reaction reach equilibrium the partial pressure of NH3 will be greater than 1atm</h3>
<em />
Answer:

Explanation:
Hello there!
In this case, according to the Dalton's law, which explains that the total pressure of a gaseous system equals the sum of the partial pressures of the gases composing, for the gaseous mixture composed by oxygen, nitrogen and carbon dioxide it would be possible to write:

Now, given the pressure of the system and those of oxygen and nitrogen, we calculate that of carbon dioxide as shown below:

Best regards!