HbA HbS
is the correct answer, just tested it
The beta-lactam group of antibiotics such as penicillins (i.e. Amoxicillin), cephalosporins (i.e. Cefuroxime), and carbapenems (i.e. Meropenem) is the most widely used group of antibiotics. Beta-lactams are bactericidal. Beta-lactams have no innate resistance to beta-lactamases (enzymes produced by bacteria to break down beta-lactam antibiotics), but they can be paired with a beta-lacamase inhibitor such as Clavulanic acid. Later generations of beta-lactams may offer resistance to beta-lactamases. Beta-lactams offer activity against a broad spectrum of bacterial pathogens, including gram-positive, gram-negative, and (in higher doses, such as Cefazolin) anaerobic coverage.
Answer:
cells lose their ability to maintain their sodium-potassium pumps, and eventually, they die.
Explanation:
If glycolysis is interrupted, these cells lose their ability to maintain their sodium-potassium pumps, and eventually, they die. The last step in glycolysis will not occur if pyruvate kinase, the enzyme that catalyzes the formation of pyruvate, is not available in sufficient quantities
Explanation:
Eukaryotic cells have specialized mechanisms to transport molecules along with membrane-bound organelles like the endoplasmic reticulum that provide a higher surface area for absorption and enable more efficient transportation.
Their structural components (i.e. their makeup) determine their function (what they do). In specific cell types, collected proteins may function as a unit called an organelle. Some organelles are bound by membranes like those that make up the external structure of the cell, with varying compositions of phospholipids and proteins. Several organelles facilitate the digestion of nutrients into metabolites and energy...
- Step 1: Mitochondria break down food and release energy; In all eukaryotic cells mitochondria are small cellular organelles bound by membranes. The higher concentrations of reactants and solutes, increases metabolic reaction efficiency; these make most of the chemical energy required for powering the biochemical reactions within the cell. This chemical energy is obtained via the breakdown of nutrients from food, and is stored within the molecule ATP. Respiration in the mitochondria utilizes oxygen for the production of ATP in the Krebs’ or Citric acid cycle via the oxidization of pyruvate (through the process of glycolysis in the cytoplasm) where several metabolites used for building other compounds are produced.
- Step 2: Lysosomes... Some organelles separate proteins and molecules that may harm the cell by parceling them into membrane-bound organelles for example, proteases bound within lysosomes can break down many structural proteins, and carbohydrates found in food, waste, and cell components
- Step 3: Vacuoles... Vacuoles are fluid filled organelles which store concentrated amounts of solutes, and waste products. Specialized vacuoles are also used to transport components to the cell membrane for cellular export.
- Step 4: The endoplasmic reticulum... Most proteins that function in the cytosol (such as actin) or in the nucleus (such as DNA polymerase) are synthesized by free ribosomes. Proteins that function within the endomembrane system (such as lysosomal enzymes) or those that are destined for secretion from the cell (such as insulin) are synthesized by bound ribosomes in the rough endoplasmic reticulum. The rest of the ER, which does not contain ribosomes is called the smooth ER, and may contain lipids, enzymes, and other proteins. As a protein destined for the endomembrane system is being synthesized by a ribosome, the first amino acids in the growing polypeptide chain act as a signal sequence. That signal sequence ensures that the ribosome binds to the outer membrane of the ER and that the protein enters the ER lumen.
- Step 5: Golgi bodies... Like a post office, the golgi complex, or golgi body recognizes signal sequences and packages these compounds into lysosomes for delivery to their final destination. Lysosomes fuse with the plasma membrane to empty their contents into the extracellular space.
Learn more about cellular life at brainly.com/question/11259903
Learn more about mitochondria at brainly.com/question/8427362
Learn more about mitochondria and similar structures at brainly.com/question/2855039
#LearnWithBrainly
Answer:
photosensitive
Explanation:
we breathe in oxygen and breathe out carbon dioxide then all that stuff goes in the air and back into plants where it produces oxygen