1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
slamgirl [31]
3 years ago
14

Emily is going to invest in an ascount paying an interest rate of 4.4% compounded

Mathematics
1 answer:
sp2606 [1]3 years ago
3 0
I’m not sure about this one I’m sorry I couldn’t help
You might be interested in
Ecuación de la hipérbola con centro en (0;0), focos en abrir paréntesis 0 coma espacio menos raíz cuadrada de 28 cerrar paréntes
yaroslaw [1]

Answer:

\frac{y^{2}}{25}-\frac{x^{2}}{3}=1

Step-by-step explanation:

Para resolver este problema debemos tomar en cuenta los datos que nos dan y la ecuación de una hipérbola. Comencemos con los datos:

centro: (0,0)

focos: (0,-\sqrt{28}),(0,\sqrt{28})

eje conjugado = 2\sqrt{3}

por los focos podemos ver que la hipérbola se dirige hacia el eje y, por lo que debemos tomar la siguiente forma de la ecuación de la parábola:

\frac{y^{2}}{a^{2}}+\frac{x^{2}}{b^{2}}=1

de los focos podemos obtener que:

c=\sqrt{28}

y del eje conjugado podemos saber que al dividir la longitud del eje conjugado dentro de 2 obtenemos b, así que:

b=\sqrt{3}

podemos utilizar la siguiente fórmula para obtener a:

c^{2}-a^{2}=b^{2}

si despejamos a en la ecuación obtenemos lo siguiente:

a=\sqrt{c^{2}-b^{2}}

ahora podemos sustituir los valores:

a=\sqrt{(\sqrt{28})^{2}-(\sqrt{3})^{2}}

a=\sqrt{28-3}

a=\sqrt{25}

a=5

así que media vez conozcamos a, podemos sustituir los datos en la ecuación de la hipérbola así que obtenemos lo siguiente:

\frac{y^{2}}{a^{2}}+\frac{x^{2}}{b^{2}}=1

\frac{y^{2}}{(5)^{2}}+\frac{x^{2}}{(\sqrt{3})^{2}}=1

\frac{y^{2}}{25}+\frac{x^{2}}{3}=1

si graficamos la hipérbola, queda como en el documento adjunto.

7 0
3 years ago
Melanie has a piece of cloth 12 and 1/3 yards long. How many 3/4 yard-long pieces can be cut from the cloth?
Harrizon [31]
This is a division problem. First, get 12 1/3 into fraction form instead of mixed number form to make your life easier;  
12  \frac{1}{3} =  \frac{36}{3} +  \frac{1}{3} =  \frac{37}{3}  
  
Now, divide the two fractions. Since this is fraction division, the reciprocal is flipped and the two fractions multiplied.  
\frac{37}{3} *  \frac{4}{3} =  \frac{148}{9} = 16  \frac{4}{9}  
  
The answer from the fraction division is 16 and four-ninths, but because you need a whole number as an answer,  
the answer is 16 pieces.
8 0
4 years ago
Read 2 more answers
please help A hologram projection of Leia is 5.5 feet tall. The angle from the ground to the top of the hologram is 25°. How far
olya-2409 [2.1K]

Answer:

11.7947881

depends now how you wanna round it

Step-by-step explanation:

tan(25)=5.5/x

x=5.5/tan(25)

x=11.7947881

this is how we round it in my school

x≈11.8

3 0
3 years ago
Write this ratio as a fraction in simplest form. 2 1/3: 4 1/2
8_murik_8 [283]
2/3:2 = 1/3:1 The last one is in simplest form.
4 0
3 years ago
2. Write a function that models the relationships among x, y, and r. (Hint: Use the Pythagorean theorem.) Then solve the equatio
In-s [12.5K]

Answer:

r^{2} = \sqrt{y^{2} + x^{2} }

Then just plug in the values depending on the bridge you chose I'm pretty sure

also can I get brainliest?

6 0
3 years ago
Other questions:
  • the matrix below represents the distance in miles between three cities. A row label represents the city traveled from. A column
    6·2 answers
  • How do you solve 6 7/10 - 2 1/3?
    9·2 answers
  • How many ways to make 59
    6·1 answer
  • PLEASE HELP ME WILL MARK BRAINLIEST
    14·1 answer
  • What is 15 plus 2000
    6·2 answers
  • PLEASE HELP!!!!
    13·2 answers
  • If you find a piece of wood that's 30.45 cm long and you break off 10.21 cm how long is the wood now
    9·2 answers
  • I need help hereeeeeeee
    11·1 answer
  • Answer this please<br>I will Brainlist him/her​
    15·1 answer
  • This table shows the linear relationship of the water level in a tank and time.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!