Answer:
The three different examples of the accelerated motion are Falling/dropping of ball, Standing in circular rotating space, moving around the circle.
Explanation:
Acceleration is the change in velocity, which is related to the speed and direction in which the object is travelling. Hence, speeding up, slowing down and turning are few types . A simple example would be dropping a ball: as it falls its speed increases, which is a type of acceleration. A more complicated example would be standing in a circular, rotating space station. A point on the station moves in a circle, meaning that as it travels it must be turning (to remain in circular motion) making this another example of acceleration
Answer:
8.9 g/cm^3
Explanation:
density = mass/volume
volume = length * width * height
volume = (8.4 cm)(5.5 cm)(4.6 cm)
volume = 212.52 cm^3
mass = 1896 g
density = (1896 g)/(212.52 cm^3)
density = 8.9 g/cm^3
P = density × gravity acceleration × height
P = 1200 × 9.81 × 15/100
P = 1765.8
The type of energy that depends on position is called
kinetic energy
-- During the time the ball is flying from the high roof to the low roof,
it's going to fall (100-25) = 75 meters.
How long does it take an object dropped from rest to fall 75 meters ?
Distance = (1/2) · (gravity) · (time)²
75 m = (4.9 m/s²) · (time)²
Time² = (75 m) / (4.9 m/s²)
Time² = 15.31 sec²
Time = √(15.31 sec²) = 3.91 seconds
So the ball has to cover the horizontal distance of 20 meters
in 3.91 seconds.
Distance = (speed) · (time)
20 m = (speed) · (3.91 sec)
Speed = (20 m) / (3.91 sec)
Speed = 5.11 m/s