Answer:
Wrong its B Use a different amount of mass in the cart for five different trials, roll the cart down a ramp with the same slope for each trial, and measure how long it takes the cart to roll one meter each time.
Explanation:
13.6) When any boat displaces a weight of water equal to its own weight, it floats.
Answer:
The fence is 5feet less.
Explanation:
We need to determine
The less amount of fence required, if the enclosure has full width and reduced length, compared to full length and reduced width.
Approach & WorkingArea of lawn = 30 × 403/4th of the area of lawn = ¾(30 × 40) = 30 * 30
When full width will be fenced, and reduced length will be fenced.
Width = 30 feet30 * L = 30 * 30Hence, length = 30 feetLength of fence needed = 2(30 + 30) = 120 feet
When full length will be fenced, and reduced width will be fenced
Length = 40 feet40 * W = 30 * 30W = 22.5 feetLength of fence needed = 2(40 + 22.5) = 125 feet
Difference in length of fence needed = 125 – 120 = 5 feet.
Answer:
The upper limit on the flow rate = 39.46 ft³/hr
Explanation:
Using Ergun Equation to calculate the pressure drop across packed bed;
we have:

where;
L = length of the bed
= viscosity
U = superficial velocity
= void fraction
dp = equivalent spherical diameter of bed material (m)
= liquid density (kg/m³)
However, since U ∝ Q and all parameters are constant ; we can write our equation to be :
ΔP = AQ + BQ²
where;
ΔP = pressure drop
Q = flow rate
Given that:
9.6 = A12 + B12²
Then
12A + 144B = 9.6 -------------- equation (1)
24A + 576B = 24.1 --------------- equation (2)
Using elimination methos; from equation (1); we first multiply it by 2 and then subtract it from equation 2 afterwards ; So
288 B = 4.9
B = 0.017014
From equation (1)
12A + 144B = 9.6
12A + 144(0.017014) = 9.6
12 A = 9.6 - 144(0.017014)

A = 0.5958
Thus;
ΔP = AQ + BQ²
Given that ΔP = 50 psi
Then
50 = 0.5958 Q + 0.017014 Q²
Dividing by the smallest value and then rearranging to a form of quadratic equation; we have;
Q² + 35.02Q - 2938.8 = 0
Solving the quadratic equation and taking consideration of the positive value for the upper limit of the flow rate ;
Q = 39.46 ft³/hr