1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
const2013 [10]
3 years ago
11

An electron moving to the left at 0.8c collides with a photon moving to the right. After the collision, the electron is moving t

o the right a 0.6c and an outgoing photon moves to the left. The rest mass of the electron is 0.511 MeV/c2. (This process is called inverse Compton scattering.)a)What were the wavelength and energy of the incoming photon?
Physics
1 answer:
SVETLANKA909090 [29]3 years ago
6 0

Answer:

Wavelength = 2.91 x 10⁻¹² m, Energy = 6.8 x 10⁻¹⁴

Explanation:

In order to show that a free electron can’t completely absorb a photon, the equation for relativistic energy and momentum will be needed, along the equation for the energy and momentum of a photon. The conservation of energy and momentum will also be used.

E = y(u) mc²

Here c is the speed of light in vacuum and y(u) is the Lorentz factor

y(u) = 1/√[1-(u/c)²], where u is the velocity of the particle

The relativistic momentum p of an object of mass m and velocity u is given by

p = y(u)mu

Here y(u) being the Lorentz factor

The energy E of a photon of wavelength λ is

E = hc/λ, where h is the Planck’s constant 6.6 x 10⁻³⁴ J.s and c being the speed of light in vacuum 3 x 108m/s

The momentum p of a photon of wavelenght λ is,

P = h/λ

If the electron is moving, it will start the interaction with some momentum and energy already. Momentum of the electron and photon in the initial and final state is

p(pi) + p(ei) = p(pf) + p(ef), equation 1, where p refers to momentum and the e and p in the brackets refer to proton and electron respectively

The momentum of the photon in the initial state is,

p(pi) = h/λ(i)

The momentum of the electron in the initial state is,

p(ei) = y(i)mu(i)

The momentum of the electron in the final state is

p(ef) = y(f)mu(f)

Since the electron starts off going in the negative direction, that momentum will be negative, along with the photon’s momentum after the collision

Rearranging the equation 1 , we get

p(pi) – p(ei) = -p(pf) +p(ef)

Substitute h/λ(i) for p(pi) , h/λ(f) for p(pf) , y(i)mu(i) for p(ei), y(f)mu(f) for p(ef) in the equation 1 and solve

h/λ(i) – y(i)mu(i) = -h/λ(f) – y(f)mu(f), equation 2

Next write out the energy conservation equation and expand it

E(pi) + E(ei) = E(pf) + E(ei)

Kinetic energy of the electron and photon in the initial state is

E(p) + E(ei) = E(ef), equation 3

The energy of the electron in the initial state is

E(pi) = hc/λ(i)

The energy of the electron in the final state is

E(pf) = hc/λ(f)

Energy of the photon in the initial state is

E(ei) = y(i)mc2, where y(i) is the frequency of the photon int the initial state

Energy of the electron in the final state is

E(ef) = y(f)mc2

Substitute hc/λ(i) for E(pi), hc/λ(f) for E(pf), y(i)mc² for E(ei) and y(f)mc² for E(ef) in equation 3

Hc/λ(i) + y(i)mc² = hc/λ(f) + y(f)mc², equation 4

Solve the equation for h/λ(f)

h/λ(i) + y(i)mc = h/λ(f) + y(f)mc

h/λ(f) = h/lmda(i) + (y(i) – y(f)c)m

Substitute h/λ(i) + (y(i) – y(f)c)m for h/λ(f)  in equation 2 and solve

h/λ(i) -y(i)mu(i) = -h/λ(f) + y(f)mu(f)

h/λ(i) -y(i)mu(i) = -h/λ(i) + (y(f) – y(i))mc + y(f)mu(f)

Rearrange to get all λ(i) terms on one side, we get

2h/λ(i) = m[y(i)u(i) +y(f)u(f) + (y(f) – y(i)c)]

λ(i) = 2h/[m{y(i)u(i) + y(f)u(f) + (y(f) – y(i))c}]

λ(i) = 2h/[m.c{y(i)(u(i)/c) + y(f)(u(f)/c) + (y(f) – y(i))}]

Calculate the Lorentz factor using u(i) = 0.8c for y(i) and u(i) = 0.6c for y(f)

y(i) = 1/[√[1 – (0.8c/c)²] = 5/3

y(f) = 1/√[1 – (0.6c/c)²] = 1.25

Substitute 6.63 x 10⁻³⁴ J.s for h, 0.511eV/c2 = 9.11 x 10⁻³¹ kg for m, 5/3 for y(i), 0.8c for u(i), 1.25 for y(f), 0.6c for u(f), and 3 x 10⁸ m/s for c in the equation derived for λ(i)

λ(i) = 2h/[m.c{y(i)(u(i)/c) + y(f)(u(f)/c) + (y(f) – y(i))}]

λ(i) = 2(6.63 x 10-34)/[(9.11 x 10-31)(3 x 108){(5/3)(0.8) + (1.25)(0.6) + ((1.25) – (5/3))}]

λ(i) = 2.91 x 10⁻¹² m

So, the initial wavelength of the photon was 2.91 x 10-12 m

Energy of the incoming photon is

E(pi) = hc/λ(i)

E(pi) = (6.63 x 10⁻³⁴)(3 x 10⁸)/(2.911 x 10⁻¹²) = 6.833 x 10⁻¹⁴ = 6.8 x 10⁻¹⁴

So the energy of the photon is 6.8 x 10⁻¹⁴ J

You might be interested in
A quarterback takes the ball from the line of scrimmage, runs backward for 12.1 yds, then runs sideways parallel to the line of
Over [174]

Answer:

The answer is 35.45 yds

Explanation:

You have to picture this to be able to understand it better (see attachment).

Start at the origin which is when the quarterback (QB) takes the ball. He runs backwards 12.1 yards, runs sideways for 19.8 yards (it doesn´t matter if he runs right or left), then he throws the ball forward 41.5 yards. If you look at the attachment, you can see I drew the path that the football followed. And then connected the dots from the origin and finish. The distance between those two points is the magnitude of the resultant displacement.

In order to calculate it, all you need to do is use the Pythagoream theorem, which says that the square of the hypotenuse equals the sum of the squares of the legs a and b of the triangle rectangle.

  1. R^{2} = a^{2} + b^{2} then solve for R
  2. R = \sqrt{a^{2}+b^{2}  }

In this case, you know the length of leg a to be 19.8 yards which how much it moves sideways. And then, to get the length of leg b, all you need to do is substract how much it moved backwards from the 41.5yards forward displacement. This results in b leg being 29.4 yards long.

Now you have a triangle with:

  • a = 19.8 yards
  • b = 29.4 yards

Substituting this numbers in the equation:

  • R = \sqrt{19.8^{2}+29.4^{2}  }
  • R = 35.45 yards

3 0
3 years ago
a 2.80 kg mass is dropped from a height of 4.50 m. find its potential energy(PE) when it is 3.00 m above the ground.PLEASE HELP
Dennis_Churaev [7]

Answer:

82.3 J

Explanation:

PE = mgh

PE = (2.80 kg) (9.8 m/s²) (3.00 m)

PE = 82.3 J

5 0
4 years ago
Water evaporators is this a physical change or a chemical change?
harina [27]
It will be a physical change
4 0
3 years ago
Read 2 more answers
Can someone love me pls
dlinn [17]

that's sad that you are trying to find love on this app :(

6 0
3 years ago
How many groups are in the modern periodic table?<br><br> 12<br> 18<br> 22<br> 24
Elan Coil [88]

Answer:

18

Explanation:

The s-, p-, and d-block elements of the periodic table are arranged into 18 numbered columns, or groups.

3 0
4 years ago
Read 2 more answers
Other questions:
  • How much force is needed to accelerate a 66kg skier at 2m/s^2
    10·1 answer
  • A mass vibrates back and forth from the free end of an ideal spring of spring constant 20.0 N/m with an amplitude of 0.250 m. Wh
    9·1 answer
  • Why do we say that a wave’s amplitude is independent of its wavelength, frequency, or speed? Earth Science H
    12·1 answer
  • The gauge pressure in your car tires is 2.50×105N/m2 at a temperature of 35.0ºC when you drive it onto a ferry boat to Alaska. W
    13·1 answer
  • If an earthquake has a velocity of 41 m/s and a wavelength of 225 meters.
    9·1 answer
  • Calcula la resistencia de un conductor de cobre de 2 m de longitud y 0,1 m2 de sección. Resistividad del Cu = 1,7 · 10–8 Ω · m
    7·1 answer
  • A man can jump 2 m on the surface of the earth, calculate the height that he can jump on the surface of the moon?​
    8·2 answers
  • Which two changes would decrease the electric force between two charged
    13·1 answer
  • A ball rolls from x=3.85m to x=22.1m in 5 seconds. What was its average velocity
    5·1 answer
  • If a black hole suddenly doubled in mass, the event horizon would become ___________ its original size. Choose one: A. one-quart
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!