When vapor pressure equals atmospheric pressure, it's called boiling point of that liquid.
Answer:
A. Speed is a scalar quantity and velocity is a vector quantity.
Explanation:
A scalar quantity is one that consists of only a numerical value.
Speed is a scalar quantity because only the instantaneous value is indicated, for example the speedometer of a car that tells you your speed at the moment but not where you are going or in what direction are you going.
On the other hand, velocity is a vector quantity. Because it is composed of a <u>magnitude and a direction</u>, for example 10m/s to the south is a velocity, and 10m/s is a speed.
Answer:
Evaporation
Explanation:
Evaporation is a form of mass tranfer phenomena where by water are moved from the earth surface into the atmosphere as vapours,it is path of the water cycle a decription of the path moved by land water until it turns into rain, humidity,air and temperature are factors that influence evaporation though evaporation can happen at all temperature
Answer:
Mass and thus force depends on the reference frame chosen
Explanation:
This can be explained as Newton's law of gravity provides action which are instantaneous at a distance and involves the evaluation of all the quantities at present time or at the instant they occur.
If the body undergoes a change in its mass distribution there will be an immediate change in its gravitational force without any lag.
Now, if we talk about special relativity, it would be absurd to say that an information can travel faster than light. The effect is in synchronization with the cause in one reference frame where the effect occurs after the cause for some observer in some other reference frame.
In order to observe Newton's law of gravity all the observer's in different reference frames must observe the same phenomena which could only be possible if time were absolute and in special relativity, time is not absolute.
Therefore, Newton's law of gravity was inconsistent with the Einstein's Special Relativity.
Acceleration = velocity / time.