Answer:
case 2 with two workers is the optimal decision.
Step-by-step explanation:
Case 1—One worker:A= 3/hour Poisson, ¡x =5/hour exponential The average number of machines in the system isL = - 3. = 4 = lJr machines' ix-A 5 - 3 2 2Downtime cost is $25 X 1.5 = $37.50 per hour; repair cost is $4.00 per hour; and total cost per hour for 1worker is $37.50 + $4.00
= $41.50.Downtime (1.5 X $25) = $37.50 Labor (1 worker X $4) = 4.00
$41.50
Case 2—Two workers: K = 3, pl= 7L= r= = 0.75 machine1 p. -A 7 - 3Downtime (0.75 X $25) = S J 8.75Labor (2 workers X S4.00) = 8.00S26.75Case III—Three workers:A= 3, p= 8L= ——r = 5- ^= § = 0.60 machinepi -A 8 - 3 5Downtime (0.60 X $25) = $15.00 Labor (3 workers X $4) = 12.00 $27.00
Comparing the costs for one, two, three workers, we see that case 2 with two workers is the optimal decision.
Use the 2 points to find the gradient of the line
Gradient = (y - y1)/(x - x1), y and y1 are the two different y values.
(2.3 - - 7.4)/(-4.3 - 1.3) = -97/56 = -1.732
Note: y and x both come from the same coordinate, and y1 and x1 also come from the same coordinates - (x , y), (x1 , y1)
Use the following to find the equation (x, x1, y, and y1 are not the same as the first part)
y - y1 = m(x - x1)
Where x2 and y2 is an intersection (one of the coordinates you used) and m is the gradient you found.
So...
y - 2.3 = -1.732(x - - 4.3)
You can simplify this if you are required to.
Answer:
It has become a cliché to describe the watch business in America
as a game of musical chairs, yet no other seems quite as
relevant.
Source: New York Times
O chord
O reinforcement
ооо
O metaphor
appendix
Step-by-step explanation:
just use ģooglr
Answer:
C.
Step-by-step explanation:
its C.